1. Dimostrare che la matrice

$$A = \left[\begin{array}{rrr} 1 & 2 & 5 \\ 2 & 3 & 1 \\ -1 & 1 & 1 \end{array} \right]$$

è invertibile e trovarne l'inversa.

Soluzione: Una matrice quadrata $n \times n$ A è invertibile se e solo se esiste una matrice $n \times n$ B tale che AB = BA = I (I è la matrice identità $n \times n$). Una matrice quadrata A è invertibile se e solo se $\det(A) \neq 0$. Si dimostra che la matrice inversa, se esiste, è unica. La matrice inversa $A^{-1} \equiv B$, se esiste, può essere calcolata usando la formula

$$b_{ij} = \frac{A_{ji}}{\det(A)},$$

dove b_{ij} è l'elemento di matrice di $B = A^{-1}$ appartenente alla riga *i*-esima e alla colonna *j*-esima, mentre A_{ji} è il complemento algebrico dell'elemento a_{ji} della matrice A: A_{ji} è definito come il prodotto tra il fattore $(-1)^{j+i}$ e il determinante della sottomatrice che si ottiene da A cancellando la *j*-esima riga e la *i*-esima colonna.

Nel caso del presente esercizio la matrice è invertibile poiché $\det(A) = 21 \neq 0$. Otteniamo

$$A^{-1} = \frac{1}{21} \begin{bmatrix} 2 & 3 & -13 \\ -3 & 6 & 9 \\ 5 & -3 & -1 \end{bmatrix}$$

.

2. Dimostrare che la matrice

$$A = \begin{bmatrix} 2 & 0 & -1 \\ 0 & 4 & 1 \\ 1 & -2 & 0 \end{bmatrix}$$

è invertibile e trovarne l'inversa. Come sono legati fra di loro i determinanti di A e di A^{-1} ?

3. Determinare l'inversa (se esiste) della matrice

$$A = \left[\begin{array}{rrr} 2 & 1 & 1 \\ 4 & 1 & 0 \\ -2 & 2 & 1 \end{array} \right]$$

.

4. Determinare per quali valori di $k \in \mathbb{R}$ la matrice

$$A = \left[\begin{array}{cc} k & 12 \\ 3 & k \end{array} \right]$$

ammette inversa.

^{*} Appunti scritti da Giuliano Benenti, email: giuliano.benenti@uninsubria.it, webpage: http://scienze-como.uninsubria.it/benenti/