Esercitazione 8 - Trasformazioni nel piano II*

1. Comporre (i) una riflessione rispetto all'asse x con (ii) una rotazione di angolo θ rispetto all'origine. Soluzione: la trasformazione composta fa passare da $P(v_1, v_2)$ a P'(x, y) nel modo seguente:

$$\begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{bmatrix} \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix} \begin{bmatrix} v_1 \\ v_2 \end{bmatrix} = \begin{bmatrix} \cos \theta & \sin \theta \\ \sin \theta & -\cos \theta \end{bmatrix} \begin{bmatrix} v_1 \\ v_2 \end{bmatrix}.$$

2. Cosa otteniamo invertendo l'ordine delle trasformazioni (i) e (ii) nell'esercizio precedente? Soluzione:

$$\begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix} \begin{bmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{bmatrix} \begin{bmatrix} v_1 \\ v_2 \end{bmatrix} = \begin{bmatrix} \cos \theta & -\sin \theta \\ -\sin \theta & -\cos \theta \end{bmatrix} \begin{bmatrix} v_1 \\ v_2 \end{bmatrix}.$$

Si noti che questa trasformazione composta è diversa da quella dell'esercizio precedente, come potevamo aspettarci dato che il prodotto di due matrici in generale non commuta.

- 3. Determinare l'equazione della rotazione di centro C=(1,1) e ampiezza $\frac{\pi}{2}$.
- 4. Determinare l'equazione della riflessione rispetto alla retta bisettrice del primo e terzo quadrante. Soluzione: Basta comporre (i) una rotazione di angolo $-\frac{\pi}{4}$ che porti la bisettrice sull'asse x, (ii) la riflessione rispetto all'asse x e (iii) una rotazione di angolo $\frac{\pi}{4}$ che porti l'asse x sulla bisettrice. Otteniamo $\begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix} \begin{bmatrix} v_1 \\ v_2 \end{bmatrix}$.
- 5. Determinare l'equazione della riflessione rispetto alla retta x = 1. Come viene trasformata la retta y = x? Determinare i punti trasformati di P(1,0), Q(1,1), R(0,1).
- 6. Determinare l'equazione della riflessione rispetto al punto C = (2, 1). Come viene trasformata la retta y = x? Determinare i punti trasformati di P(1, 0), Q(1, 1), R(0, 1).
- 7. Determinare la trasformazione composizione di una rotazione di angolo $\theta_1 = \frac{\pi}{3}$ con un'altra rotazione di angolo $\theta_2 = \frac{\pi}{6}$.
- 8. Determinare la trasformazione composta da (i) riflessione rispetto all'asse y e (ii) traslazione di vettore $\vec{b} = \begin{bmatrix} 3 \\ 0 \end{bmatrix}$. Soluzione: Scrivendo le due trasformazioni nella forma matriciale $\vec{x} = A_1 \vec{v} + \vec{b}_1$ e $\vec{x} = A_2 \vec{v} + \vec{b}_2$, otteniamo $\vec{v} \to A_1 \vec{v} + \vec{b}_1 \to A_2 (A_1 \vec{v} + \vec{b}_1) + \vec{b}_2 = A_2 A_1 \vec{v} + A_2 \vec{b}_1 + \vec{b}_2$. La trsformazione composta è quindi della forma $\vec{x} = A \vec{v} + \vec{b}$, con $A = A_2 A_1$ e $\vec{b} = A_2 \vec{b}_1 + \vec{b}_2$. Siccome $A_1 = \begin{bmatrix} -1 & 0 \\ 0 & 1 \end{bmatrix}$, $A_2 = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$, $\vec{b}_1 = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$, $\vec{b}_2 = \begin{bmatrix} 3 \\ 0 \end{bmatrix}$, otteniamo $A = \begin{bmatrix} -1 & 0 \\ 0 & 1 \end{bmatrix}$, $\vec{b} = \begin{bmatrix} 3 \\ 0 \end{bmatrix}$.
- 9. Applicare lo shear parallelo all'asse y e di rapporto $k_y = \sqrt{3}/3$ al parallelogramma di vertici 0(0,0), $A(1,-\sqrt{3}/3)$, B(1,1), $C(0,1+\sqrt{3}/3)$. Disegnare l'oggetto trasformato.
- 10. Studiare la trasformazione definita dalla matrice $A = \begin{bmatrix} 0 & 1 \\ -1 & 0 \end{bmatrix}$ e dal vettore di traslazione $\vec{b} = \begin{bmatrix} -2 \\ -2 \end{bmatrix}$. Dire se la trasformazione è invertibile, se è un'isometria e se vi sono punti uniti. Soluzione: Siccome $\det(A) = 1 \neq 0$ la trasformazione è invertibile. Poiché $A^TA = I$ abbiamo un'isometria. Essendo poi $\det(A) = 1$, tale isometria è diretta. I punti uniti soddisfano l'equazione $\vec{x} = A\vec{v} + \vec{b} = \vec{v}$, da cui ricaviamo un unico punto unito, $(v_1 = -2, v_2 = 0)$. La trasformazione è una rotazione di angolo $\theta = -\frac{\pi}{2}$ (ricavato dalla marice A imponendo $\cos \theta = 0$, $\sin \theta = 1$) e centro (-2, 0).

^{*} Appunti scritti da Giuliano Benenti, email: giuliano.benenti@uninsubria.it, webpage: http://scienze-como.uninsubria.it/benenti/

- 11. Identificare la trasformazione definita dalla matrice $A = \begin{bmatrix} 2 & 0 \\ 0 & 2 \end{bmatrix}$ e dal vettore di traslazione $\vec{b} = \begin{bmatrix} -1 \\ -1 \end{bmatrix}$. Soluzione: Siccome $\det(A) = 4 \neq 0$ la trasformazione è invertibile. Data la forma della matrice A, la trasformazione è un'omotetia di rapporto 2. Da $A\vec{v} + \vec{b} = \vec{v}$ ricaviamo un unico punto unito, $(v_1 = 1, v_2 = 1)$, che rappresenta il centro di omotetia.
- 12. Identificare la trasformazione definita dalla matrice $A = \begin{bmatrix} -1 & 0 \\ 0 & 1 \end{bmatrix}$ e dal vettore di traslazione $\vec{b} = \begin{bmatrix} 1 \\ 0 \end{bmatrix}$. Soluzione: Siccome $\det(A) = -1 \neq 0$ la trasformazione è invertibile. Poiché $A^TA = I$ abbiamo un'isometria. Essendo poi $\det(A) = -1$, tale isometria è inversa. Da $A\vec{v} + \vec{b} = \vec{v}$ ricaviamo che i punti della retta $v_1 = \frac{1}{2}$ sono punti uniti. La trasformazione è pertanto una riflessione rispetto a tale retta.
- 13. Determinare la trasformazione lineare che mappa i vertici del quadrato unitario OABC nel modo seguente: $O(0,0) \to O' = 0, \ A(1,0) \to A' = A, \ B(1,1) \to B'(1+\sqrt{3}/3,1), \ C(0,1) \to C'(\sqrt{3}/3,1).$ Soluzione: Una generica trasformazione lineare nel piano ha come equazione matriciale

$$\begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{bmatrix} \begin{bmatrix} v_1 \\ v_2 \end{bmatrix} + \begin{bmatrix} b_1 \\ b_2 \end{bmatrix}.$$

Dobbiamo quindi determinare i coefficienti a_{ij} e b_i . Dal fatto che l'origine viene mappata in se stessa otteniamo $b_1 = b_2 = 0$. Poiché $A \to A$ abbiamo poi $a_{11} = 1$, $a_{21} = 0$. Infine, da $C \to C'$ ricaviamo $a_{12} = \sqrt{3}/3$, $a_{22} = 1$. La trasformazione è quindi uno shear parallelo all'asse x e di rapporto $k_x = \sqrt{3}/3$.

14. Determinare la trasformazione lineare che mappa i vertici del quadrato unitario ABCD nel modo seguente: $A(-3,2) \rightarrow A'(0,2), B(-2,2) \rightarrow B' = B, C(-2,3) \rightarrow C'(-2,1), D(-3,3) \rightarrow D'(0,1).$