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OUTLINE
Understanding, characterising, and measuring the 
complexity of quantum motion: a fundamental 
problem for quantum quantum information and 
quantum technologies

Classical complex systems characterized by 
exponential instability of motion (chaos, algorithmic 
complexity, deterministic randomness,...)

Phase-space approach: we propose the number number 
of harmonics/separability entropy of the Wigner 
function as measures of complexity of a quantum state

Quantum mechanics: the notion of trajectories is 
forbidden by the Heisenberg uncertainty principle



Classical chaos: Exponential instability

Classical chaos is characterized by exponential local 
instability: two nearby trajectories separate 
exponentially, with rate given by the maximum 
Lyapunov exponent



Classical chaos: Trajectories are unpredictable

Chaotic orbits are unpredictable: in order to predict a new 
segment of a trajectory one needs additional information 
proportional to the length of the segment and independent of the 
previous length of the trajectory. The information associated with 
a segment of trajectory of length t is equal, asymptotically, to

h is the KS (Kolmogorov-Sinai) entropy: positive when λ > 0



Classical chaos: Statistical description of motion

Exponential instability ⇒  Continuous (frequency) Fourier spectrum of 
motion  

Continuous spectrum  (plus undecomposable energy surface) ⇒ Decay 
of correlations (mixing)  

Mixing assures the statistical independence of different parts of a 
trajectory  

Mixing (scrambling in quantum information) ⇒  Statistical description 
of chaotic dynamics (diffusion, relaxation, ...) 

Integrable systems ⇒ Nearby points separate only linearly



Loss of memory in the Arnold cat map

Stretching and folding of the cat in 
phase space  

Any amount of error rapidly effaces the 
memory of the initial distribution

(Arnold and Avez, Ergodic problems of 
classical mechanics)
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Quantum chaos?

The alternative of exponential or power-law 
divergence of trajectories disappears in quantum 
mechanics, Heisenberg’s uncertainty principle 
forbidding the notion of trajectories 

The energy and the frequency spectrum of any 
quantum motion, bounded in phase space, are always 
DISCRETE ⇒ regular motion 

“Discreteness of the phase space”: the uncertainty 
principle implies a finite size of an elementary phase 
space cell



Complexity 

EntanglementQuantum chaos



Requirements for quantum complexity quantifiers:

(i) to provide a unified description of both one- and many-
body dynamics; 

(ii) to reproduce at the classical limit the well-known notion 
of classical complexity based on the local exponential 
instability of chaotic dynamics; 

(iii) to be applicable to both pure and mixed states;  

(iv) to be practically useful, that is, convenient for numerical 
investigations.



Number of harmonics
In classical mechanics the number of harmonics (i.e., components 
in the Fourier space) of the classical distribution function in phase 
space is an estimate of the classical computing resources needed 
for accurate simulation of Liouville dynamics  

The (growth rate of the) number of harmonics is a measure of 
classical complexity (Gu, Brumer, Pattanayak, Gong,…) 

The number of harmonics of the Wigner function is a suitable 
measure of the complexity of a quantum state



Number of harmonics in classical mechanics

Hamiltonian of a N-particle system:

H = H0 +HI
<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

integrable or non-integrable perturbation



Evaluate the number of harmonics by the second moment of 
harmonics distribution:

classical distribution function

Finite-time results depend on the choice of the basis, not the 
asymptotic growth rate, determined by the largest Lyapunov 
exponent, which is basis-independent



Number of harmonics in quantum mechanics

Wigner function:

displacement operator



Evaluate the number of harmonics by the second moment of 
(Wigner) harmonics distribution:

In terms of the density operator one can show that 



Numerical illustration: coupled oscillators

Chaotic regime

Integrable regime



Chaotic regime

Integrable regime

(quadratic growth)

(exponential growth, 
with rate twice the 
largest Lyapunov 

exponent)



Wigner separability entropy
Schmidt (singular value) decomposition of the Wigner function

Arbitrary phase space decomposition, Ω = Ω1 ⊕ Ω2, into two set of 
coordinates, z ≡ (x, y); normalization constraint                      :

Definition (Wigner separability entropy):



Connection with  operator space entanglement entropy  
(for bipartite systems) 

        ⇒ the density operator is a Hilbert-Schmidt operator



Operator space entanglement entropy

The Weyl correspondence establishes an isomorphism 
between Hilbert-Schmidt operators and L2(Ω) functions 
on classical phase space. One can prove that: 

[Benenti, Carlo, Prosen, PRE 85, 051129 (2012)] 

Put on a broader context the complexity of the classical 
simulation of quantum dynamics



Pure states
Schmidt decomposition of 

Schmidt decomposition of 



For pure states the Wigner separability entropy is twice the 
entanglement entropy (i.e., reduced von Neumann entropy)

The quantum mutual information measures correlations (both of 
classical and quantum nature) between subsystems 1 and 2



Numerical illustration

Chaotic regime Integrable regime

Coupled 
oscillators model

S(t) / (�1 + �2)t
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Connection with  out-of-time-ordered correlates (OTOC)

The number of harmonics can be seen as an OTOC with: 

Standard OTOC:

Classical limit:

Exponential growth in the chaotic case (Larkin and Ovchinnikov, 
1996; Maldacena and Stanford, 2016,…)



Numerical illustration
Chaotic regime

Integrable regime

(Coupled oscillators model)

(exponential growth, 
with rate twice the 
largest Lyapunov 

exponent)

(quadratic growth)



Detect transition to chaos in the time domain
Coupled 
oscillators model

𝚫 from level 
spacing statistics

     average velocity 
in the growth of 
OTOC



Summary 

At the classical limit the classical notion of complexity based 
on exponential instability is recovered

Complexity of quantum motion can be conveniently 
characterized in phase space

The relation with entanglement is clear for bipartite pure 
states, while for the generic case it remains an open problem



Quantum computation and information is a 
rapidly developing interdisciplinary field. It 
is not easy to understand its fundamental 
concepts and central results without facing 
numerous technical details. This book 
provides the reader with a useful 
guide. In particular, the initial 
chapters offer a simple and self-
contained introduction; no previous 
knowledge of quantum mechanics 
or classical computation is required.

Various important aspects of quan-
tum computation and information 
are covered in depth, starting from the foun-
dations (the basic concepts of computational 
complexity, energy, entropy, and information, 
quantum superposition and entanglement, 
elementary quantum gates, the main quan-
tum algorithms, quantum teleportation, and 
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quantum cryptography) up to advanced 
topics (like entanglement measures, quan-
tum discord, quantum noise, quantum 
channels, quantum error correction, quan-
tum simulators, and tensor networks).

It can be used as a broad range 
textbook for a course in quantum 
information and computation, 
both for upper-level undergraduate 
s t u d e n t s  a n d  f o r  g r a d u a t e 
students.  I t  contains a large 
number of solved exercises, which 

are an essential complement to the text, as 
they will help the student to become 
familiar with the subject. The book may also 
be useful as general education for readers 
who want to know the fundamental 
principles of quantum information and 
computation.
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