
Quantum ratchets for periodically kicked cold atoms
and Bose-Einstein condensates

Giuliano Benenti

Center for Nonlinear and Complex Systems
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Motivations and Outline

• Study the effect of quantum noise on open quantum chaotic systems (also
motivated by technological progress)

• Possibilities opened by optical lattices for the experimental investigations of
complex systems

1) A model for quantum directed transport in a periodic chaotic systems with
dissipation, in presence of lattice asymmetry and unbiased driving
Possible experimental implementation with cold atoms in optical lattices

2) The role of atom-atom interactions: Many-body Hamiltonian quantum ratchet
in a Bose-Einstein condensate
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The Feynman ratchet

Can useful work be extracted out of unbiased microscopic random fluctuations if
all acting forces and temperatures gradients average out to zero?

(taken from D.Astumian, Scientific

American, July 2001)

Thermal equilibrium: the gas surrounding
the paddles and the ratchet (plus the pawl)
are at the same temperature

In spite of the built asymmetry no preferential
direction of motion is possible. Otherwise,
we could implement a perpetuum mobile, in
contradiction with the second law of thermo-
dynamics
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Brownian motors

To build a Brownian motor drive the system out of equilibrium

Cold

Cold

Hot

Working principle of a Brownian motor driven by temperature oscillations

4



Another model of Brownian motor: a pulsating (flashing) ratchet

On

On

Off
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Quantum ratchets

A rocking ratchet: the ratchet potential is tilted
symmetrically and periodically

Due to the asymmetry of the barriers, a thermally
activated net current (to the right) is generated
(after averaging over both tilt directions)

Tunneling electrons, however, prefer the thinner
barriers that are the result of tilt to the left

Electrons powered by ac signals could run against a static electric field (“electrons
going uphill”)
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Quantum tunneling provides a second
mechanism (the first being the thermal
activation) to overcome energy barriers
and lead to directed motion

(String of triangular quantum dots, Linke

et al experiments, Science, 1999)
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Rectification of fluctuations in optical lattices

Optical pumping: transition between two ground state sublevels of atoms in
optical lattices - As this is a stochastic process, fluctuations in the atomic
dynamics are introduced, resulting in a random walk through the optical lattice

Apply a zero-mean ac force breaking all relevant system’s symmetry:

F (t) = F0[A cos(ωt) +B cos(2ωt− φ)]
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This force is obtained (in the accelerated frame in which the optical lattice is
stationary) by means of a phase-modulated beam:

α(t) = α0[A cos(ωt) +
B

4
cos(2ωt− φ)], F0 ∝ α0

[R. Gommers, S. Bergamini, F. Renzoni, PRL 95, 073003 (2005)]
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Directed transport in asymmetric antidot lattices

[A.D. Chepelianskii and D.L. Shepelyansky, PRB 71, 052508 (2005)]

The semidisk Galton board (with chaotic classical dynamics) is subjected to
microwave polarized radiation, at finite temperature

Directed transport with antidots of micron size up to about 100 GHz - possible
application as new type of highly sensitive detectors of polarized radiation, useful
for instance in the field of radioastronomy
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Ratchet effect in molecular wires
Molecular wire in an asymmetric potential, subjected to effective dissipation from
leads and to a laser field (Motivations: molecular electronics, self-assembly,...)

[J. Lehmann, S. Kohler, P. Hänggi, and A. Nitzan PRL 88, 228305 (2002)]

Ratchet current exhibits resonances: coherent transport
The multiple current reversals open prospects to pump and shuttle electrons on
the nanoscale in an a priori manner
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Quantum ratchets in dissipative chaotic systems,
Phys. Rev. Lett. 94, 164101 (2005)

A deterministic model of quantum chaotic dissipative ratchet

Particle moving in a kicked periodic asymmetric potential [H = I2

2 + V (x, τ)]

V (x, τ) = k
[
cos(x) +

a

2
cos(2x+ φ)

] +∞∑
m=−∞

δ(τ −mT ),

Classical evolution in one period described by the map

{
I = (1− γ)I + k(sin(x) + a sin(2x+ φ)),
x = x+ TI,

0 < γ < 1 dissipation parameter (velocity proportional damping):
γ = 1 overdamping – γ = 0 Hamiltonian evolution

Introducing the rescaled momentum variable p = TI, one can see that classical
dynamics depends on the parameter K = kT (not on k and T separately)

G.G. Carlo, G.Benenti, G.Casati, D.L.Shepelyansky



Quantum ratchets in dissipative chaotic systems,
Phys. Rev. Lett. 94, 164101 (2005)

Study of the quantized model

Quantization rules: x→ x̂, I → Î = −i(d/dx) (we set h̄ = 1)

Since [x̂, p̂] = [x̂, T Î] = iT , the effective Planck constant is h̄eff = T

In order to simulate a dissipative environment in the quantum model we consider
a master equation in the Lindblad form for the density operator ρ̂ of the system:

˙̂ρ = −i[Ĥs, ρ̂]− 1
2

2∑
µ=1

{L̂†µL̂µ, ρ̂}+
2∑

µ=1

L̂µρ̂L̂
†
µ

Ĥs = Î2/2 + V (x̂, τ) system Hamiltonian
L̂µ Lindblad operators
{ , } denotes the anticommutator

G.G. Carlo, G.Benenti, G.Casati, D.L.Shepelyansky



Quantum ratchets in dissipative chaotic systems,
Phys. Rev. Lett. 94, 164101 (2005)

The dissipation model

We assume that dissipation is described by the lowering operators

L̂1 = g
∑
I

√
I + 1 |I〉 〈I + 1|,

L̂2 = g
∑
I

√
I + 1 | − I〉 〈−I − 1|, I = 0, 1, ...

These Lindblad operators can be obtained by considering the interaction between
the system and a bosonic bath. The master equation is then derived, at zero
temperature, in the usual weak coupling and Markov approximations

Requiring that at short times 〈p〉 evolves like in the classical case, as it should be

according to the Ehrenfest theorem, we obtain e−g
2
= 1− γ

Simulation of quantum dissipation with quantum trajectories

G.G. Carlo, G.Benenti, G.Casati, D.L.Shepelyansky



Quantum ratchets in dissipative chaotic systems,
Phys. Rev. Lett. 94, 164101 (2005)

Asymmetric quantum strange attractor
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0

Phase space pictures for K = 7,
γ = 0.3, φ = π/2, a = 0.7, after
100 kicks: classical Poincaré sections
(left) and quantum Husimi functions
at h̄eff = 0.012 (right)

p = TI rescaled momentum
K = Tk rescaled kicking strength

G.G. Carlo, G.Benenti, G.Casati, D.L.Shepelyansky



Quantum ratchets in dissipative chaotic systems,
Phys. Rev. Lett. 94, 164101 (2005)

Ratchet effect

0 20 40 60 80 100
t

−0.4

0

0.4

0.8

1.2

<
p>

CLASSICAL

QUANTUM hbar=1

hbar=0.037

Average momentum 〈p〉 as a
function of time t (measured in
number of kicks)

G.G. Carlo, G.Benenti, G.Casati, D.L.Shepelyansky



Quantum ratchets in dissipative chaotic systems,
Phys. Rev. Lett. 94, 164101 (2005)

Control the direction of transport

0 20 40 60 80 100
t

−1

−0.5

0

0.5

1

<
p>

φ=π/2

φ=2π/5

φ=0

φ=−2π/5

φ=−π/2

Zero net current for φ = nπ, due to the space symmetry V (x, τ) = V (−x, τ)
In general 〈p〉−φ = −〈p〉φ, due to the symmetry Vφ(x, τ) = V−φ(−x, τ)

G.G. Carlo, G.Benenti, G.Casati, D.L.Shepelyansky



Quantum ratchets in dissipative chaotic systems,
Phys. Rev. Lett. 94, 164101 (2005)

Stability under noise effects
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Memoryless fluctuations in the
kicking strength: K → Kε(t) =
K + ε(t), ε(t) ∈ [−ε,+ε]

The ratchet effect survives up
to a noise strength ε of the order of
the kicking strength K

G.G. Carlo, G.Benenti, G.Casati, D.L.Shepelyansky



Quantum ratchets in dissipative chaotic systems,
Phys. Rev. Lett. 94, 164101 (2005)

A note about possible implementations

Possible experimental implementations with cold atoms in a periodic standing
wave of light

Values K = 7, h̄eff ∼ 1 used in the experimental implementations of the kicked
rotor model
Ex: From Raizen’s group, PRL 75, 4598 (1995) (sodium atoms in a laser field):

λL = 589 nm laser field wave length

K =
√

2παΩeffωrT
2 classical chaos parameter

h̄eff = 8ωrT

T pulse periodicity

Ωeff effective Rabi frequency

ωr = h̄k2
L/2M recoil frequency (kL = 1/λL, M atomic mass)

α fraction of Gaussian pulse duration in units of pulse period

Ωeff/2π = 75 MHz, T = 0.8 µs, α = 0.05 give h̄eff ≈ 1, K ≈ 5

G.G. Carlo, G.Benenti, G.Casati, D.L.Shepelyansky



Quantum ratchets in dissipative chaotic systems,
Phys. Rev. Lett. 94, 164101 (2005)

The cos(x) + cos(2x + φ) potential has been recently implemented in optical
lattices by the group of Martin Weitz (cond-mat/0512018)

Friction force can be implemented by means of Doppler cooling techniques
For sodium a dissipation rate 2β ≈ 4 × 105 s−1 [Raab et al., PRL 59, 2631 (1987)] gives

γ ≈ 0.3

State reconstruction techniques [Bienert et al., PRL 89, 050403 (2002)] could
in principle allow the experimental observation of a quantum strange ratchet
attractor

The ratchet effect is robust when noise is added; due to the presence of a strange
attractor, the stationary current is independent of the initial conditions

G.G. Carlo, G.Benenti, G.Casati, D.L.Shepelyansky



Quantum ratchet with cold atoms in a pair of pulsed optical lattices,
cond-mat/0605695, Phys. Rev. A (in press)

Experimental proposal

The ratchet effect can be realized with two series of spatially periodic kicks:

H(t) =
p2

2
+Vφ,ξ(x, t), Vφ,ξ = k

+∞X
n=−∞

[δ(t− nT ) cos(x) + δ(t− nT − ξ) cos(x− φ)]

We can break all relevant symmetries and induce the ratchet effect with a purely Hamiltonian

model (see also Monteiro et al., PRL 89, 194102 (2002))

We are interested in symmetries that leave invariant the equations of motion but change the sign

of p (see Flach et al., PRL 84, 2358 (2000)):

(I) x→ −x+ α, t→ t+ β,

(II) x→ x+ α, t→ −t+ β.

Symmetry (I) is broken for φ 6= 0, π, symmetry (II) is broken for ξ 6= 0, T/2

It should be remarked that fluctuations in the rectified current grow with time in the Hamiltonian

case for this model, while they saturate in the dissipative case when the strange attractor sets in

G.G. Carlo, G. Benenti, G. Casati, S. Wimberger, O. Morsch, R. Mannella, E. Arimondo



Many-body quantum ratchet in a Bose-Einstein condensate,
preprint cond-mat/0609535

Many-body quantum ratchet in a Bose-Einstein condensate

Quantum Hamiltonian ratchets are relevant in systems such as cold atoms in which
the high degree of quantum control may allow experimental implementations near
to the dissipationless limit

The realization of Bose-Einstein condensates of dilute gases has opened new
opportunities for the study of dynamical systems in the presence of many-body
interactions: it is possible to prepare initial states with high precision and to tune
over a wide range the many-body atom-atom interaction

Study directed transport in many-body quantum system

D. Poletti, G. Benenti, G. Casati, B. Li



Many-body quantum ratchet in a Bose-Einstein condensate,
preprint cond-mat/0609535

The model: a kicked BEC

We consider N condensed atoms confined in a toroidal trap of radius R and cross section πr2

(r ¿ R, one-dimensional motion)

The T = 0 motion of a dilute BEC in a pair of periodically kicked optical lattices is described by

the Gross-Pitaevskii nonlinear equation

i
∂

∂t
ψ(θ, t) =

"
−1

2

∂2

∂θ2
+ g|ψ(θ, t)|2 + V (θ, φ, t)

#
ψ(θ, t)

θ azimuthal angle

g = 8NaR/r2 scaled strength of the repulsive (g > 0) nonlinear interaction (a s-wave

scattering length)

V (θ, φ, t) =
X
n

[V1(θ)δ(t− nT ) + V2(θ, φ)δ(t− nT − ξ)]

V1(θ) = k cos θ, V2(θ, φ) = k cos(θ − φ)

k kicking strength, T period of the kicks

D. Poletti, G. Benenti, G. Casati, B. Li



Many-body quantum ratchet in a Bose-Einstein condensate,
preprint cond-mat/0609535

The noninteracting limit (g = 0)

When φ 6= 0, π and ξ 6= 0, T/2 space-time symmetries are broken and there
is directed transport, both in the classical limit and, in general, in quantum
mechanics

However, if T = 6π and ξ = 4π, then the quantum motion, independently of the
kicking strength k, is periodic of period 2T

ψ(θ, 4π+) = exp[−iV1(θ)]ψ(θ, 0)

ψ(θ, 6π+) = exp[−iV2(θ, φ)]ψ(θ + π, 4π+) = exp{−i[V2(θ, φ)− V1(θ)]}ψ(θ + π, 0)

ψ(θ, 10π+) = exp[−iV1(θ)]ψ(θ, 6π+) = exp(−iV2(θ, φ))ψ(θ + π, 0)

ψ(θ, 12π+) = exp[−iV2(θ, φ)]ψ(θ + π, 10π+) = ψ(θ, 0)

D. Poletti, G. Benenti, G. Casati, B. Li



Many-body quantum ratchet in a Bose-Einstein condensate,
preprint cond-mat/0609535

If the initial wave function ψ(θ, 0) = 1/
√

2π, then directed transport is absent

The momentum 〈p(t)〉 = −i ∫ 2π

0
dθψ?(θ, t) ∂∂θψ(θ, t) also changes periodically

with period 2T = 12π (4 kicks)

Therefore, the average momentum pav ≡ limt→∞ p(t), (p(t) ≡ 1
t

∫ t
0
dt′〈p(t′)〉)

is obtained after averaging the momentum over the period 2T :

pav = 〈p(0)〉+ k
2

∫ 2π

0
(sin(θ)− sin(θ − φ)) |ψ(θ, 0)|2dθ,

For ψ(t, 0) = 1/
√

2π (ground state of a particle in the trap) the momentum is
always zero at any time:
This initial condition has an important physical meaning, as it corresponds to
the initial condition for a Bose-Einstein condensate

D. Poletti, G. Benenti, G. Casati, B. Li



Many-body quantum ratchet in a Bose-Einstein condensate,
preprint cond-mat/0609535

Ratchet effect in a BEC (g 6= 0)
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p 

>

Time (in units of 2  

Momentum versus time for different
values of interaction strength g, at
k ≈ 0.74, φ = −π/4:
g = 0 (dashed curve),
g = 0.5 (continuous curve),
g = 1 (dotted curve)

D. Poletti, G. Benenti, G. Casati, B. Li



Many-body quantum ratchet in a Bose-Einstein condensate,
preprint cond-mat/0609535
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  g  

Momentum averaged over the first 30
kicks (squares) and asymptotic momen-
tum (triangles)
Inset: g = 0.1, 0.2, 0.4, 1.0, 1.5

The ratchet phenomenon can
be used to measure atom
interaction strength

STABILITY OF THE RATCHET
TO PERTURBATIONS:
• Kicking period fluctuations of
size T/100 generate, after 30
kicks, a current p̄ = −0.007
• Gaussian pulses of width T/10
lead to p̄ = −0.01

D. Poletti, G. Benenti, G. Casati, B. Li



Many-body quantum ratchet in a Bose-Einstein condensate,
preprint cond-mat/0609535

Why the interaction-induced ratchet effect?

For small g, approximate the free evolution of the BEC by a split-operator method:

ψ(θ, τ) ≈ e
−i12 ∂2

∂θ2
τ
2e−ig|ψ̃(θ,τ2)|2τe−i12 ∂2

∂θ2
τ
2ψ(θ, 0), ψ̃ (θ, t+ ∆t) = e

−i12 ∂2

∂θ2
∆t
ψ(θ, t)

|ψ(θ, 6π)|2 ≈ 1
2π
{1 + g sin[4V1(θ)]}, V1(θ) = k cos θ

At t = 6π (before the second kick) the initial constant probability distribution is
modified by a term symmetric under the transformation θ → −θ

〈p(6π+)〉 = −
∫ 2π

0

dθV ′2(θ, φ)|ψ(θ, 6π)|2 ≈ −gk sin(φ)J1(4k), V2 = k cos(θ−φ)

This current is in general different from zero, provided that V2(θ, φ) is not itself
symmetric under θ → −θ, that is, when φ 6= 0, π

D. Poletti, G. Benenti, G. Casati, B. Li



Many-body quantum ratchet in a Bose-Einstein condensate,
preprint cond-mat/0609535

φ→ −φ symmetry
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φ = −π/4 (continuous line),
φ = 0 (dashed line),
φ = π/4 (dotted line)

D. Poletti, G. Benenti, G. Casati, B. Li



Many-body quantum ratchet in a Bose-Einstein condensate,
preprint cond-mat/0609535

After substituting θ → −θ in the Gross-Pitaevskii equation, and taking into
account that that V (−θ, φ, t) = V (θ,−φ, t), we obtain

i
∂

∂t
ψ̃(θ, t) =

[
−1

2
∂2

∂θ2
+ g|ψ̃(θ, t)|2 + V (θ,−φ, t)

]
ψ̃(θ, t), ψ̃(θ, t) ≡ ψ(−θ, t)

Therefore, if ψ(θ, t) is a solution of the Gross-Pitaevskii equation, then also
ψ̃(θ, t) is a solution, provided that we substitute φ→ −φ in the potential V

The momentum 〈p̃(t)〉 of the wavefunction ψ̃(θ, t) is given by 〈p̃(t)〉 = −〈p(t)〉,
where 〈p(t)〉 is the momentum of ψ(θ, t)

Since we start with an even wavefunction, ψ̃(θ, 0) = ψ(−θ, 0) = ψ(θ, 0), then
φ→ −φ changes the sign at any later time

D. Poletti, G. Benenti, G. Casati, B. Li



Many-body quantum ratchet in a Bose-Einstein condensate,
preprint cond-mat/0609535

Evolution of non-condensed particles

When studying the dynamics of a kicked BEC, it is important to take into
account the proliferation of noncondensed atoms: actually, strong kicks may lead
to thermal excitations out of equilibrium and destroy the condensate, rendering
the description by the Gross-Pitaevskii equation meaningless

Let us show that, for the parameter values considered in the previous figures,
the number of noncondensed particles is negligible compared to the number of
condensed ones

D. Poletti, G. Benenti, G. Casati, B. Li



Many-body quantum ratchet in a Bose-Einstein condensate,
preprint cond-mat/0609535

Linear stability analysis

At T = 0 the mean number of noncondensed particles is [see Castin and Dum,
PRA57, 3008 (1998) and Zhang et al, PRL92, 054101 (2004)]

δN(t) =
∞∑

j=1

∫ 2π

0

dθ|vj(θ, t)|2,

i
∂

∂t

[
uj(θ, t)
vj(θ, t)

]
=

[
H1(θ, t) H2(θ, t)
−H∗

2(θ, t) −H?
1(θ, t)

] [
uj(θ, t)
vj(θ, t)

]
,

H1(θ, t) = H(θ, t)− µ(t) + gQ(t)|ψ(θ, t)|2Q(t)
H(θ, t) = −1

2
∂2

∂θ2
+g|ψ(θ, t)|2+V (θ, φ, t) mean-field Gross-Pitaevskii Hamiltonian

µ(t) chemical potential [H(θ, t)ψ(θ, t) = µ(t)ψ(θ, t)]
Q(t) = 1− |ψ(t)〉〈ψ(t)| projects orthogonally to |ψ(t)〉
H2(θ, t) = gQ(t)ψ2(θ, t)Q∗(t)

D. Poletti, G. Benenti, G. Casati, B. Li



Many-body quantum ratchet in a Bose-Einstein condensate,
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Inset: δN vs. g after 30 kicks

The number δN of noncondensed
particles, depending on the stability
or instability of the condensate, grows
polynomially or exponentially

The transition from stability to in-
stability takes place at g = gc ≈ 1.7

At g > gc, thermal particles prolif-
erate exponentially fast, δN ∼ exp(rt)

At g < gc, the growth rate r = 0

D. Poletti, G. Benenti, G. Casati, B. Li



Many-body quantum ratchet in a Bose-Einstein condensate,
preprint cond-mat/0609535

Remarks on experimental feasibility
Torus-like potential confining the BEC feasible by means of optical billiards

Kicks may be applied using a periodically pulsed strongly detuned laser beam with
a suitably engineered intensity [Mieck and Graham, J. Phys. A 37, L581 (2004)]

Optical traps such as the 87Rb BEC in a quasi-one-dimensional optical box trap,
with condensate length ∼ 80 µm, transverse confinement ∼ 5 µm, and number
of particles N ∼ 103 [T.P. Meyrath et al., Phys. Rev. A 71, 041604(R) (2005)]

Sequences of up to 25 kicks have been applied to a BEC of 87Rb atoms confined
in a static harmonic magnetic trap, with kicking strength k ∼ 1 and in the
quantum antiresonance case for the kicked oscillator model, T = 2π [G.J. Duffy
et al., Phys. Rev. A 70, 041602(R) (2004)]

The interaction strength g can be tuned using a Feshbach resonance

D. Poletti, G. Benenti, G. Casati, B. Li



Conclusions and prospects

• Cold atoms and Bose-Einstein condensates exposed to time-dependent standing
waves of light provide an ideal test bed to explore complex quantum dynamics

• Quantum dissipative ratchets: study the impact of dynamical effects such as
bifurcations on the ratchet current

• Quantum many-body ratchet effect in a BEC: find different models (beyond
periodic motion)

• From simple models to complex solid state and biological samples: under-
stand charge-transfer phenomena in molecular wires and biomolecules: study
conductance under laser excitation, current control, ...


