### **Quantum thermal engines:** selected results and open problems



Giuliano Benenti Center for Nonlinear and Complex Systems, Univ. Insubria, Como, Italy INFN, Milano, Italy

Thanks to collaborators: Matteo Carrega, Fabio Cavaliere, Maura Sassetti (CNR, Genova) Luca Razzoli (Como)

Acknowledgements:



### **Outline (some selected questions)**

A key question in (quantum) thermodynamics: What are the ultimate bounds to the performance of a heat engine?

Thermodynamics of precision: What is the relevance of thermal and quantum fluctuations?

Violating Thermodynamic Uncertainty Relations (TURs): is there a quantum advantage?

### **General consideration on thermal engines**

Upper bound to efficiency given by the Carnot efficiency:



$$\eta = \frac{W}{Q_H} \le \eta_C = 1 - \frac{T_C}{T_H}$$
$$(T_H > T_C)$$

Carnot efficiency obtained for quasi-static transformation (zero extracted power)

The ideal Carnot engine is a reversible machine, since there is no dissipation (no entropy production)

### **Finite time thermodynamics**

In an ideal Carnot engine conversion processes are quasi-static and the extracted power reduces to zero.

How much the efficiency deteriorates when heat to work conversion takes place in a finite time?

<u>Finite time thermodynamics:</u> finite-time steady-state conversion processes or thermodynamic cycles; the efficiency at the maximum output power is an important concept (more generally, power-efficiency trade-off)

[Andresen, Angew. Chem. Int. Ed. 50, 2690 (2011),...]

### **Curzon-Ahlborn (endoreversible) engine**

Dissipation is due to finite thermal conductances between heat reservoirs and the ideal heat engine



The efficiency at maximum power (Curzon-Ahlborn efficiency) is independent of the heat conductances:

$$\eta_{CA} = 1 - \sqrt{\frac{T_H}{T_C}} = 1 - \sqrt{1 - \eta_C}$$

[Curzon and Ahlborn, AJP 43, 22 (1975)]

### Schmiedl-Seifert (exoreversible) engine

Irreversibility only arises due to internal dissipative processes



Schmiedl-Seifert efficiency at maximum power:

 $\eta_{SS} = \frac{\eta_C}{2 - \gamma \eta_C}$   $\gamma \in [0, 1]$   $\gamma = 1/2$  for symmetric dissipation

[Schmiedl and Seifert, APL 81, 2003 (2008)]

### Low-dissipation engines

The entropy production vanishes in the limit of infinite-time cycles:

,

$$Q_{H} = T_{H} \left( \Delta \mathscr{S} - \frac{\Sigma_{H}}{t_{H}} \right)$$

$$\int_{0.8}^{1.0} \frac{\eta_{C}/(2-\eta_{C})}{\text{dots: efficiencies of various thermal power plants}} \frac{\eta_{CA}}{\eta_{CA}}$$

$$\int_{0.4}^{0.6} \frac{\Sigma_{C}/\Sigma_{H} \rightarrow 0}{\sum_{C}/\Sigma_{H} \rightarrow \infty} \frac{\eta_{C}/2}{\sum_{C}/\Sigma_{H} \rightarrow \infty}$$

2

$$Q_C = T_C \left( -\Delta \mathscr{S} - \frac{\Sigma_C}{t_C} \right)$$

#### The CA limit is recovered for symmetric dissipation: $\Sigma_H = \Sigma_C$

TABLE I. Theoretical bounds and observed efficiency  $\eta_{obs}$  of thermal plants.

| Plant                             | $T_h(K)$ | $T_c(K)$ | $\eta_C$ | $\eta$ | $\eta_+$ | $\eta_{ m obs}$ |
|-----------------------------------|----------|----------|----------|--------|----------|-----------------|
| Doel 4 (Nuclear, Belgium) [6]     | 566      | 283      | 0.5      | 0.25   | 0.33     | 0.35            |
| Almaraz II (Nuclear, Spain) [6]   | 600      | 290      | 0.52     | 0.26   | 0.35     | 0.34            |
| Sizewell B (Nuclear, UK) [6]      | 581      | 288      | 0.5      | 0.25   | 0.34     | 0.36            |
| Cofrentes (Nuclear, Spain) [6]    | 562      | 289      | 0.49     | 0.24   | 0.32     | 0.34            |
| Heysham (Nuclear, UK) [6]         | 727      | 288      | 0.60     | 0.30   | 0.43     | 0.40            |
| West Thurrock (Coal, UK) [1]      | 838      | 298      | 0.64     | 0.32   | 0.48     | 0.36            |
| CANDU (Nuclear, Canada) [1]       | 573      | 298      | 0.48     | 0.24   | 0.32     | 0.30            |
| Larderello (Geothermal, Italy)[1] | 523      | 353      | 0.32     | 0.16   | 0.19     | 0.16            |
| Calder Hall (Nuclear, UK) [6]     | 583      | 298      | 0.49     | 0.24   | 0.32     | 0.19            |
| (Steam/Mercury,USA) [6]           | 783      | 298      | 0.62     | 0.31   | 0.45     | 0.34            |
| (Steam, UK) [6]                   | 698      | 298      | 0.57     | 0.29   | 0.40     | 0.28            |
| (Gas Turbine, Switzerland) [6]    | 963      | 298      | 0.69     | 0.35   | 0.53     | 0.32            |
| (Gas Turbine, France) [6]         | 953      | 298      | 0.69     | 0.34   | 0.52     | 0.34            |

[Esposito, Kawai, Lindenberg, Van den Broeck, PRL 105, 150603 (2010)]

### **Carnot efficiency at finite power?**



$$\mathcal{F}_{e} = \Delta V/T \quad (\Delta V = \Delta \mu/e)$$
$$\mathcal{F}_{h} = \Delta T/T^{2}$$
$$\Delta \mu = \mu_{L} - \mu_{R}$$
$$\Delta T = T_{L} - T_{R}$$
$$T_{L} > T_{R}, \ \mu_{L} < \mu_{R}$$

 $J_e = L_{ee}(\mathbf{B})\mathcal{F}_e + L_{eh}(\mathbf{B})\mathcal{F}_h$ 

$$J_h = L_{he}(\mathbf{B})\mathcal{F}_e + L_{hh}(\mathbf{B})\mathcal{F}_h$$

B applied magnetic field or any parameter breaking timereversibility such as the Coriolis force, etc.

$$P(\bar{\eta}_{\max}) = \frac{\bar{\eta}_{\max}}{4} \frac{|L_{eh}^2 - L_{he}^2|}{L_{ee}} \mathcal{F}_h$$

[G.B., K. Saito, G. Casati, PRL 106, 230602 (2011)]

**Onsager relations with broken time-reversal symmetry** 

$$H = \sum_{i}^{N} \frac{[p_{i} - q_{i} A(r_{i})]^{2}}{2m_{i}} + \frac{1}{2} \sum_{i \neq j} V(r_{ij})$$

Analytical result for B = B(x) k

Landau gauge:  $A(x) \mathbf{j}$ 

 $\begin{cases} \dot{x}_{i} = \frac{p_{i}^{x}}{m_{i}}, & \text{if} \\ \dot{y}_{i} = \frac{1}{m_{i}} \left[ p_{i}^{y} - q_{i}A(x_{i}) \right], & \text{if} \\ \dot{y}_{i} = \frac{p_{i}^{z}}{m_{i}}, & \text{if} \\ \dot{z}_{i} = \frac{p_{i}^{z}}{m_{i}}, & \text{if} \\ \dot{z}_{i} = \frac{p_{i}^{z}}{m_{i}}, & \text{if} \\ \dot{p}_{i}^{x} = F_{i}^{x} + \frac{q_{i}}{m_{i}} \left[ p_{i}^{y} - q_{i}A(x_{i}) \right] B(x_{i}), \\ \dot{p}_{i}^{y} = F_{i}^{y}, & \text{if} \\ \dot{p}_{i}^{z} = F_{i}^{z}, & F_{i}^{\alpha} = -\frac{\partial \sum_{j \neq i} V(r_{ij})}{\partial \alpha} \end{cases}$ 

Equations of motion invariant under:

$$\mathcal{M}(x, y, z, p^x, p^y, p^z, t, \mathbf{B}) \\ = (x, -y, z, -p^x, p^y, -p^z, -t, \mathbf{B})$$

[for constant field see Bonella, Ciccotti, Rondoni, EPL **108**, 60004 (2014)]

[Luo, GB, Casati, Wang, Phys Rev Research 2, 022009(R) (2020)]

#### Numerics for a generic magnetic field



generic 2D case: B(x) = gx $B(x,y) = g \sin[\pi x/(2L)] \sin[\pi y/(2W)]$ 

Theoretical argument: divide the system into small volumes  $dV_{\alpha}$ 

Time-reversal trajectories without  $f_x = \sin[\pi x/(2L)], f_y = \sin[\pi y/(2W)],$ reversing the field for  $dV_{\alpha} \rightarrow 0$ 

generic 3D case:

 $\boldsymbol{B} = g(B_x, B_y, B_z),$ 

 $B_x = f_y f_z, B_y = f_z f_x, B_z = f_x f_y,$  $f_z = \sin[\pi z/(2H)]$ 

[Luo, GB, Casati, Wang, Phys Rev Research 2, 022009(R) (2020)]

#### **Power-efficiency trade-off**

## For heat engines described as Markov processes: $P \le A(\eta_{\rm C} - \eta)$

[N. Shiraishi, K. Saito, H. Tasaki, PRL 117, 190601 (2016)]

The prefactor A is system-dependent and may be arbitrarily large, for instance diverge close to a phase transition



Diverging power fluctuations may, however, make such engines impractical

#### **Thermodynamic uncertainty relations**

Thermodynamic uncertainty relations (TURs), for steady-state stochastic heat engines (rate equations, overdamped Langevin dynamics)

First law:  $j_w = j_h - j_c = P$ 

Fluctuations for each of the currents

$$\Delta_{\alpha} \equiv \lim_{t \to \infty} \langle (j_{\alpha}(t) - j_{\alpha})^2 \rangle t \qquad \alpha = h, \ c, \ w$$

Entropy production rate

$$\dot{S} = j_c / T_c - j_h / T_h = j_w (\eta_C / \eta - 1) / T_c$$

$$TUR: \quad \frac{j_\alpha^2}{\Delta_\alpha} \le \frac{\dot{S}}{2k_B}$$

#### **Power-efficiency-fluctuations trade-off**

For the work current (power)

$$\frac{P^2}{\Delta_P} \le \frac{S}{2k_B}$$

 $\Delta_P = \lim_{t \to \infty} [P(t) - P]^2 t \qquad P(t) \text{ power delivered} \\ \text{up to time t}$ 

Trade-off between the three desiderata of a heat engine:  $\eta = k_{\rm B}T_c = 1$ 

$$\mathcal{Q} \equiv P \frac{\eta}{\eta_C - \eta} \frac{n_{\rm B} r_c}{\Delta_P} \le \frac{1}{2}.$$

[Pietzonka and Seifert, PRL 120, 190602 (2018)]

Finite output power at Carnot efficiency only at the price at diverging fluctuations (no engine reliability)

#### **TUR saturation within linear response**

Within linear response charge current fluctuations related to conductance via the Johnson-Nyquist fluctuation-dissipation relation

 $\begin{array}{ll} \Delta_e = S_0 = 2k_{\rm B}TG, & S_0 & \mbox{equilibrium noise} \\ J_e = G \, \Delta V & \mbox{(voltage independent)} \\ \dot{S} = \mathcal{F}_e J_e = \Delta V J_e / T \\ & \mbox{$\frac{J_e^2}{\Delta_e} = \frac{\dot{S}}{2k_{\rm B}}$} \end{array}$ 

# **Quantum coherent transport can lead to TUR violation** Expand charge noise and current in powers of the applied voltage

$$J_e = G_1(\Delta V) + \frac{1}{2!}G_2(\Delta V)^2 + \frac{1}{3!}G_3(\Delta V)^3 + \dots,$$
  
$$\Delta_e = S_0 + S_1(\Delta V) + \frac{1}{2!}S_2(\Delta V)^2 + \frac{1}{3!}S_3(\Delta V)^3 + \dots$$
  
$$S_1 = k_{\rm B}TG_2, \qquad G_1 \equiv G$$

$$\frac{k_{\rm B}J_e^2}{\dot{S}\Delta_e} = \frac{1}{2} + \frac{(\Delta V)^2}{24k_{\rm B}TG_1}(2k_{\rm B}TG_3 - 3S_2) + O((\Delta V)^3)$$

Quantum coherent transport can lead to second-order correction violating TUR (quantum advantage in thermodynamics of precision)

[Agarwalla and Segal, PRB **98**, 155438 (2018); see also Ptaszyński Phys. Rev. B **98**, 085425 (2018), Rignon-Bret et al., PRE **103**, 012133 (2021), Kalee et al., PRE **104**, L012103 (2021),...]

#### **TUR violation approaching Carnot efficiency?**

Find the transmission function that optimizes the heat-engine efficiency for a given output power



#### **Fluctuations (scattering theory)**

Power fluctuations derived from the Levitov-Lesovik cumulant generating function

$$\Delta_P = (\Delta V)^2 \int_{-\infty}^{+\infty} d\epsilon (\mathcal{T}(\epsilon) \{ f_L(\epsilon) [1 - f_L(\epsilon)] \}$$

 $+f_R(\epsilon)[1-f_R(\epsilon)]\} + \mathcal{T}(\epsilon)[1-\mathcal{T}(\epsilon)][f_L(\epsilon)-f_R(\epsilon)]^2)$ 

For a boxcar transmission function:

$$\Delta_P = \frac{(\Delta \mu)^2}{h} \int_{\epsilon_0}^{\epsilon_1} d\epsilon \left[ f_L(\epsilon) + f_R(\epsilon) - f_L^2(\epsilon) - f_R^2(\epsilon) \right]$$

#### **Power-efficiency-fluctuations trade-off**

More restrictive bound within Landauer approach



### **Overcoming the bound: periodically driven systems**

#### Isothermal heat engine



[L. M. Cangemi, M. Carrega, A. De Candia, V. Cataudella,G. De Filippis, M. Sassetti, GB, PRR 3, 013237 (2021)]

### Advantages of the model

It can be analytically solved, also in the far from equilibrium regime and for strong system-bath coupling, without resorting to overdamped limit, Markovian master equation or other approximations

Possible to break time reversibility

Address all driving regimes from the quasistatic to the antiadiabatic one

Non-Markovian effects can be addressed by engineering the bath spectral density

$$J(\omega) = m\gamma_s \bar{\omega}^{1-s} \frac{\omega^s}{1 + (\omega/\omega_c)^2}$$

#### **Equations of motion**

$$\begin{split} \langle \dot{x}(t) \rangle &= \frac{\langle p(t) \rangle}{m} - \varepsilon_2(t), \\ \langle \ddot{x}(t) \rangle &+ \int_{-\infty}^t dt' \gamma(t - t') \langle \dot{x}(t') \rangle + \omega_0^2 \langle x(t) \rangle = \frac{\varepsilon_1(t)}{m} - \dot{\varepsilon}_2(t), \end{split}$$

starting from a factorised initial state, with the bath at thermal equilibrium

 $\rho_{\text{tot}}(t_0) = \rho_S(t_0) \otimes \rho_R(t_0) \qquad \rho_R(t_0) = \exp(-H_R/T)/\text{Tr}\{\exp(-H_R/T)\}$ with  $t_0 \to -\infty$  the initial time

the memory kernel describes friction:

 $\gamma(t) = \frac{2}{\pi m} \theta(t) \int_0^{+\infty} d\omega J(\omega) \cos(\omega t) / \omega$ 

#### **Power and fluctuations**

Power along the input/output channels

$$P_1(t) = -\dot{\varepsilon}_1(t)\langle x(t)\rangle, \ P_2(t) = -\dot{\varepsilon}_2(t)\langle p(t)\rangle$$

Average powers

$$P_i = \frac{1}{\mathcal{T}} \int_{\bar{t}}^{\mathcal{T}+\bar{t}} dt P_i(t)$$

Power fluctuations

$$D_{i}(t) = \frac{1}{t - t_{0}} \int_{t_{0}}^{t} dt_{2} \int_{t_{0}}^{t} dt_{1} \langle \delta P_{i}(t_{2}) \delta P_{i}(t_{1}) \rangle,$$

$$\delta P_1(t) = -\dot{\varepsilon}_1(t)[x(t) - \langle x(t) \rangle],$$
  
$$\delta P_2(t) = -\dot{\varepsilon}_2(t)[p(t) - \langle p(t) \rangle]$$

Heat  $P = P_1 + P_2 = \langle \dot{H}_R \rangle$ 

Efficiency 
$$\eta \equiv \frac{P_{\text{out}}}{P_{\text{in}}}$$
  $P_{\text{in}} = P_2 > 0$   $P_{\text{out}} = -P_1$   $(P_1 < 0)$ 

### Anti-adiabatic regime: approaching Carnot at finite power and small fluctuations



### Generalization to two or more reservoirs (with periodically modulated system-baths couplings)



#### Working medium:

quantum harmonic oscillator

$$H_{
m WM}=rac{p^2}{2m}+rac{1}{2}m\omega_0^2x^2$$
 .

$$H^{(t)} = H_{ ext{WM}} + \sum_{
u=1}^{N} \left[ H_{
u} + H^{(t)}_{ ext{int},
u} 
ight]$$

#### Bath

Collection of harmonic oscillators (Caldeira-Leggett framework)

$$H_
u = \sum_{k=1}^\infty \left[ rac{P_{k,
u}^2}{2m_{k,
u}} + rac{1}{2}m_{k,
u}\omega_{k,
u}^2 X_{k,
u}^2 
ight]$$

**Interaction WM-Bath** 

 $egin{aligned} extbf{Driven periodic coupling} \ H^{(t)}_{ ext{int},
u} &= \sum\limits_{k=1}^{\infty} \left\{ -xg_{
u}(t)c_{k,
u}X_{k,
u} + x^2g_{
u}^2(t)rac{c_{k,
u}^2}{2m_{k,
u}\omega_{k,
u}^2} 
ight\} \end{aligned}$ 

 $\sum_{k=1}^{p} \left( \sum_{k=1}^{n} \left( \sum_{k$ 

 $g_{\mathbf{V}}(t)$  dimensionless function  $g_{\nu}(t) = g_{\nu}(t + \mathcal{T}) = \sum_{n=-\infty}^{+\infty} g_{n,\nu} e^{-in\Omega t}, \quad \Omega = 2\pi/\mathcal{T}$ 

[M. Carrega, L. M. Cangemi, G. De Filippis, V. Cataudella, GB, M. Sassetti, PRX Quantum **3**, 010323 (2022)] The formalism is versatile and promising to investigate thermal engines and heat management in structured environments, also beyond weak coupling



V. Cataudella, GB, M. Sassetti, PRX Quantum 3, 010323 (2022)]

### **Dynamical heat engines** with non-Markovian environments

Non-Markovianity necessary but non sufficient condition to obtain a heat engine (with monochromatic driving of the coupling to one reservoir)



[F. Cavaliere, M. Carrega, G. De Filippis, V. Cataudella, GB, M. Sassetti, Phys. Rev. Res. 4, 033233 (2022)]

### Hybrid quantum thermal machines





Two-terminal device

**Standard thermal machines** consists of a working medium connected to two heat baths, a cold reservoir and a hot one.

Thermodynamics laws allow only **three useful tasks** (heat engine, **refrigerator-pump\***, and heat pump) and a **wasteful** one.



[Entin-Wohlman et al., Phys. Rev. B **91**, 054302 (2015); Manzano et al., Phys. Rev. Res. **2**, 043302 (2020); López et al., Phys. Rev. Research 5, 013038 (2023); Lu et al., Phys. Rev. B **107**, 075428 (2023), ...]

#### **Exergy efficiency (or second-law efficiency)**

**Entropy production rate**  $\dot{S} = -\sum_{\nu=1}^{N} \frac{J_{\nu}}{T_{\nu}} \ge 0$  (2<sup>nd</sup> Law of TD)

Split positive (+) from negative (–) contributions  $\dot{S} = \dot{S}^{(+)} + \dot{S}^{(-)}$ 

The **exergy efficiency** is defined as the ratio of  $\dot{S}^{(-)}$  (the useful inputs) to  $\dot{S}^{(+)}$  (the wasteful outputs)

$$0 \le \phi = -\frac{\dot{S}^{(-)}}{\dot{S}^{(+)}} \le 1$$

Bounds due to  $\dot{S} = \dot{S}^{(+)} - |\dot{S}^{(-)}| \ge 0 \Rightarrow |\dot{S}^{(-)}| \le \dot{S}^{(+)}$ 

#### **Model:** QHO coupled to three baths

# \*Coupling **modulated** by a **monochromatic** driving

Spectral density, v = h, c $\mathcal{J}_{v}(\omega) = \frac{d_{v}m\gamma_{v}\omega}{\left(\omega^{2} - \omega_{v}^{2}\right)^{2} + \gamma_{v}^{2}\omega_{v}^{2}}$ 





Weak-coupling with Lorentzian baths

In this regime the three-terminal device is equivalent to two two-terminal devices working together

### **Operating modes in a two-terminal device**



Introduce the **detuning parameter**  $\Delta = \omega_c - \omega_h$ , with  $\omega_v$  of the Lorentzian spectral density  $J_v(\omega)$ 

Find  $\Delta$  to obtain a suitable **mixing of the operating modes** 



[F. Cavaliere, L. Razzoli, M. Carrega, GB and M. Sassetti, iScience **26**, 106235 (2023)]

#### Three-terminal device as a thermal transistor



[F. Cavaliere, L. Razzoli, M. Carrega, GB and M. Sassetti, iScience **26**, 106235 (2023)]

#### No violation of TURs in this setup



[L. Razzoli, F. Cavaliere, M. Carrega, M. Sassetti and GB, Eur. Phys. J. Spec. Top. (2023)]

### Some open problems

Explore more complex architecture for the working medium: Violation of TURs possible?

Extend optimal control techniques to driven quantum heat engines, beyond Markovian master equations

Trade-off between precision and initialisation time for qubit preparation (cooling, third law of thermodynamics)

On a more general side, optimize the energetic consumption of future quantum technologies