Quantum Ratchets and Wave Packet Collapse in Dissipative Chaotic Systems

Giuliano Benenti

Center for Nonlinear and Complex Systems
Università degli Studi dell’Insubria
Como, Italy

http://scienze-como.uninsubria.it/benenti
http://scienze-como.uninsubria.it/complexcomo

In collaboration with:
Gabriel Carlo (Como → Buenos Aires), Giulio Casati (Como)
Dima Shepelyansky (Toulouse)
Sandro Wimberger, Oliver Morsch, Riccardo Mannella, Ennio Arimondo (Pisa)
Dario Poletti, Baowen Li (Singapore)
Motivations and Outline

- Study the effect of quantum noise on open quantum chaotic systems (also motivated by technological progress)
- Possibilities opened by optical lattices for the experimental investigations of complex systems

1) A model for quantum directed transport in a periodic chaotic systems with dissipation, in presence of lattice asymmetry and unbiased driving
 Possible experimental implementation with cold atoms in optical lattices

2) The role of atom-atom interactions: Many-body quantum Hamiltonian quantum ratchet in a Bose-Einstein condensate

3) Is it possible to recover classical-like chaotic dynamics (positive Lyapunov exponent) in a dissipative system?
 Transition from wave packet collapse to explosion
The Feynman ratchet

Can useful work be extracted out of unbiased microscopic random fluctuations if all acting forces and temperatures gradients average out to zero?

Thermal equilibrium: the gas surrounding the paddles and the ratchet (plus the pawl) are at the same temperature

In spite of the built asymmetry no preferential direction of motion is possible. Otherwise, we could implement a perpetuum mobile, in contradiction with the second law of thermodynamics

(taken from D.Astumian, Scientific American, July 2001)
Brownian motors

To build a Brownian motor drive the system out of equilibrium

Working principle of a Brownian motor driven by temperature oscillation
Another model of Brownian motor: a pulsating (flashing) ratchet
Quantum ratchets

A rocking ratchet: the ratchet potential is tilted symmetrically and periodically

Due to the asymmetry of the barriers, a thermally activated net current (to the right) is generated (after averaging over both tilt directions)

Tunneling electrons, however, prefer the thinner barriers that are the result of tilt to the left

Electrons powered by ac signals could run against a static electric field (“electrons going uphill”)
Quantum tunneling provides a second mechanism (the first being the thermal activation) to overcome energy barriers and lead to directed motion

(String of triangular quantum dots, Linke et al. experiments, Science, 1999)
Optical pumping: transition between two ground state sublevels of atoms in optical lattices - As this is a stochastic process, fluctuations in the atomic dynamics are introduced, resulting in a random walk through the optical lattice.

Apply a zero-mean ac force breaking all relevant system's symmetry:

\[F(t) = F_0[A \cos(\omega t) + B \cos(2\omega t - \phi)] \]
This force is obtained (in the accelerated frame in which the optical lattice is stationary) by means of a phase-modulated beam:

\[\alpha(t) = \alpha_0 [A \cos(\omega t) + \frac{B}{4} \cos(2\omega t - \phi)] \]

[R. Gommers, S. Bergamini, F. Renzoni, PRL 95, 073003 (2005)]
Directed transport in asymmetric antidot lattices

The semidisk Galton board (with chaotic classical dynamics) is subjected to microwave polarized radiation, at finite temperature

Directed transport with antidots of micron size up to about 100 GHz - possible application as new type of highly sensitive detectors of polarized radiation, useful for instance in the field of radioastronomy
Ratchet effect in molecular wires

Molecular wire in an asymmetric potential, subjected to effective dissipation from leads and to a laser field (Motivations: molecular electronics, self-assembly,...)

[R. Lehmann, S. Kohler, P. Hänggi, and A. Nitzan PRL 88, 228305 (2002)]

Ratchet current exhibits resonances: coherent transport

The multiple current reversals open prospects to pump and shuttle electrons on the nanoscale in an a priori manner

[R. Lehmann, S. Kohler, P. Hänggi, and A. Nitzan PRL 88, 228305 (2002)]
Quantum ratchets in dissipative chaotic systems,

A deterministic model of quantum chaotic dissipative ratchet

Particle moving in a kicked periodic asymmetric potential \([H = \frac{I^2}{2} + V(x, \tau)]\)

\[
V(x, \tau) = k \left[\cos(x) + \frac{a}{2} \cos(2x + \phi) \right] \sum_{m=-\infty}^{+\infty} \delta(\tau - mT),
\]

Classical evolution in one period described by the map

\[
\begin{align*}
\bar{I} &= (1 - \gamma)I + k(\sin(x) + a \sin(2x + \phi)), \\
\bar{x} &= x + T\bar{I},
\end{align*}
\]

0 \(<\gamma<1\) dissipation parameter (velocity proportional damping):

\(
\gamma = 1 \) overdamping \(- \)

\(
\gamma = 0 \) Hamiltonian evolution

Introducing the rescaled momentum variable \(p = TI \), one can see that classical dynamics depends on the parameter \(K = kT \) (not on \(k \) and \(T \) separately)

G.G. Carlo, G.Benenti, G.Casati, D.L.Shepelyansky
Study of the quantized model

Quantization rules: \(x \rightarrow \hat{x}, I \rightarrow \hat{I} = -i(d/dx) \) (we set \(\hbar = 1 \))

Since \([\hat{x}, \hat{p}] = [\hat{x}, T\hat{I}] = iT\), the effective Planck constant is \(\hbar_{\text{eff}} = T \)

In order to simulate a dissipative environment in the quantum model we consider a master equation in the Lindblad form for the density operator \(\hat{\rho} \) of the system:

\[
\dot{\hat{\rho}} = -i[\hat{H}_s, \hat{\rho}] - \frac{1}{2} \sum_{\mu=1}^{2} \{\hat{L}_\mu^\dagger \hat{L}_\mu, \hat{\rho}\} + \sum_{\mu=1}^{2} \hat{L}_\mu \hat{\rho} \hat{L}_\mu^\dagger
\]

\(\hat{H}_s = \hat{I}^2/2 + V(\hat{x}, \tau) \) system Hamiltonian
\(\hat{L}_\mu \) Lindblad operators
\{ , \} denotes the anticommutator

G.G. Carlo, G.Benenti, G.Casati, D.L.Shepelyansky
The dissipation model

We assume that dissipation is described by the lowering operators

\[\hat{L}_1 = g \sum_I \sqrt{I+1} |I\rangle \langle I+1|, \]
\[\hat{L}_2 = g \sum_I \sqrt{I+1} |-I\rangle \langle -I-1|, \quad n = 0, 1, \ldots \]

These Lindblad operators can be obtained by considering the interaction between the system and a bosonic bath. The master equation is then derived, at zero temperature, in the usual weak coupling and Markov approximations.

Requiring that at short times \(\langle p \rangle \) evolves like in the classical case, as it should be according to the Ehrenfest theorem, we obtain \(e^{-g^2} = 1 - \gamma \)

Simulation of quantum dissipation with quantum trajectories

G.G. Carlo, G.Benenti, G.Casati, D.L.Shepelyansky
Asymmetric quantum strange attractor

Phase space pictures for $K = 7$, $\gamma = 0.3$, $\phi = \pi/2$, $a = 0.7$, after 100 kicks: classical Poincaré sections (left) and quantum Husimi functions at $\hbar_{\text{eff}} = 0.012$ (right)

$p = TI$ rescaled momentum
$K = T k$ rescaled kicking strength

G.G. Carlo, G.Benenti, G.Casati, D.L.Shepelyansky
Quantum ratchets in dissipative chaotic systems,

Ratchet effect

Average momentum $\langle p \rangle$ as a function of time t (measured in number of kicks)

G.G. Carlo, G.Benenti, G.Casati, D.L.Shepelyansky
Control the direction of transport

Zero net current for $\phi = n\pi$, due to the space symmetry $V(x, \tau) = V(-x, \tau)$

In general $\langle p \rangle_{-\phi} = -\langle p \rangle_{\phi}$, due to the symmetry $V_{\phi}(x, \tau) = V_{-\phi}(-x, \tau)$

G.G. Carlo, G.Benenti, G.Casati, D.L.Shepelyansky
Quantum ratchets in dissipative chaotic systems,

Stability under noise effects

Memoryless fluctuations in the kicking strength: \(K \rightarrow K_\epsilon(t) = K + \epsilon(t), \epsilon(t) \in [-\epsilon, +\epsilon] \)

The ratchet effect survives up to a noise strength \(\epsilon \) of the order of the kicking strength \(K \)

G.G. Carlo, G.Benenti, G.Casati, D.L.Shepelyansky
A note about possible implementations

Possible experimental implementations with cold atoms in a periodic standing wave of light

Values $K = 7$, $\hbar_{\text{eff}} \sim 1$ used in the experimental implementations of the kicked rotor model

Ex: From Raizen’s group, PRL 75, 4598 (1995):

sodium atoms in a laser field

$\lambda_L = 589$ nm laser field wave length

$K = \sqrt{2\pi \alpha \Omega_{\text{eff}} \omega_r T^2}$ classical chaos parameter

$\hbar_{\text{eff}} = 8\omega_r T$

T pulse periodicity

Ω_{eff} effective Rabi frequency

$\omega_r = \hbar k_L^2/2M$ recoil frequency ($k_L = 1/\lambda_L$, M atomic mass)

α fraction of Gaussian pulse duration in units of pulse period

$\Omega_{\text{eff}}/2\pi = 75$ MHz, $T = 0.8 \mu$s, $\alpha = 0.05$ give $\hbar_{\text{eff}} \approx 1$, $K \approx 5$

G.G. Carlo, G.Benenti, G.Casati, D.L.Shepelyansky
Quantum ratchets in dissipative chaotic systems,

Friction force can be implemented by means of Doppler cooling techniques. For sodium, a dissipation rate $2\beta \approx 4 \times 10^5 \text{ s}^{-1}$ [Raab et al., PRL 59, 2631 (1987)] gives $\gamma \approx 0.3$.

State reconstruction techniques [Bienert et al., PRL 89, 050403 (2002)] could in principle allow the experimental observation of a quantum strange ratchet attractor.

The ratchet effect is robust when noise is added; due to the presence of a strange attractor, the stationary current is independent of the initial conditions.
Experimental proposal

The ratchet effect can be realized with two series of spatially periodic kicks:

\[H(t) = \frac{p^2}{2} + V_{\phi,\xi}(x, t), \quad V_{\phi,\xi} = k \sum_{n=-\infty}^{+\infty} [\delta(t - nT) \cos(x) + \delta(t - nT - \xi) \cos(x - \phi)] \]

We can break all relevant symmetries and induce the ratchet effect with a purely Hamiltonian model (see also Monteiro et al., PRL 89, 194102 (2002))

We are interested in symmetries that leave invariant the equations of motion but change the sign of \(p \) (see Flach et al., PRL 84, 2358 (2000)):

(I) \(x \rightarrow -x + \alpha, \quad t \rightarrow t + \beta, \)

(II) \(x \rightarrow x + \alpha, \quad t \rightarrow -t + \beta. \)

Symmetry (I) is broken for \(\phi \neq 0, \pi \), symmetry (II) is broken for \(\xi \neq 0, T/2 \)

It should be remarked that fluctuations in the rectified current grow with time in the Hamiltonian case, while they saturate in the dissipative case when the strange attractor sets in

G.G. Carlo, G. Benenti, G. Casati, S. Wimberger, O. Morsch, R. Mannella, E. Arimondo
Many-body quantum ratchet in a Bose-Einstein condensate

Quantum Hamiltonian ratchets are relevant in systems such as cold atoms in which the high degree of quantum control may allow experimental implementations near to the dissipationless limit.

The realization of Bose-Einstein condensates of dilute gases has opened new opportunities for the study of dynamical systems in the presence of many-body interactions: it is possible to prepare initial states with high precision and to tune over a wide range the many-body atom-atom interaction.

Study directed transport in many-body quantum system
The model: a kicked BEC

We consider N condensed atoms confined in a toroidal trap of radius R and cross section πr^2 ($r \ll R$, one-dimensional motion).

The $T = 0$ motion of a dilute BEC in a pair of periodically kicked optical lattices is described by the Gross-Pitaevskii nonlinear equation

$$i \frac{\partial}{\partial t}\psi(\theta, t) = \left[-\frac{1}{2} \frac{\partial^2}{\partial \theta^2} + g|\psi(\theta, t)|^2 + V(\theta, \phi, t) \right] \psi(\theta, t)$$

θ azimuthal angle
$g = 8NaR/r^2$ scaled strength of the repulsive ($g > 0$) nonlinear interaction (a s-wave scattering length)

$$V(\theta, \phi, t) = \sum_n [V_1(\theta)\delta(t - nT) + V_2(\theta, \phi)\delta(t - nT - \xi)]$$

$$V_1(\theta) = k\cos\theta, \quad V_2(\theta, \phi) = k\cos(\theta - \phi)$$

k kicking strength, T period of the kicks
Many-body quantum ratchet in a Bose-Einstein condensate, preprint

The noninteracting limit \((g = 0)\)

When \(\phi \neq 0, \pi\) and \(\xi \neq 0\), \(T/2\) space-time symmetries are broken and there is directed transport, both in the classical limit and, in general, in quantum mechanics.

However, if \(T = 6\pi\) and \(\xi = 4\pi\), then the quantum motion, independently of the kicking strength \(k\), is periodic of period \(2T\):

\[
\psi(\theta, 4\pi^+) = \exp[-iV_1(\theta)]\psi(\theta, 0)
\]

\[
\psi(\theta, 6\pi^+) = \exp[-iV_2(\theta, \phi)]\psi(\theta + \pi, 4\pi^+)
= \exp\{-i[V_2(\theta, \phi) - V_1(\theta)]\}\psi(\theta + \pi, 0)
\]

\[
\psi(\theta, 10\pi^+) = \exp[-iV_1(\theta)]\psi(\theta, 6\pi^+) = \exp(-iV_2(\theta, \phi))\psi(\theta + \pi, 0)
\]

\[
\psi(\theta, 12\pi^+) = \exp[-iV_2(\theta, \phi)]\psi(\theta + \pi, 10\pi^+) = \psi(\theta, 0)
\]

D. Poletti, G. Benenti, G. Casati, B. Li
Moreover, if the initial wave function $\psi(\theta, 0) = 1/\sqrt{2\pi}$, then directed transport is absent

The momentum $\langle p(t) \rangle = -i \int_0^{2\pi} d\theta \psi^*(\theta, t) \frac{\partial}{\partial \theta} \psi(\theta, t)$ also changes periodically with period $2T = 12\pi$ (4 kicks)

Therefore, the average momentum

$$p_{av} \equiv \lim_{t \to \infty} \overline{p}(t), \quad (\overline{p}(t) \equiv \frac{1}{t} \int_0^t dt' \langle p(t') \rangle)$$

is obtained after averaging the momentum over the period $2T$:

$$p_{av} = \langle p(0) \rangle + \frac{k}{2} \int_0^{2\pi} (\sin(\theta) - \sin(\theta - \phi)) |\psi(\theta, 0)|^2 d\theta,$$

For the constant initial condition $\psi(t, 0) = 1/\sqrt{2\pi}$, which is the ground state of a particle in the trap, the momentum is always zero at any time: This initial condition has an important physical meaning, as it corresponds to the initial condition for a Bose-Einstein condensate
Ratchet effect in a BEC \((g \neq 0)\)

Momentum versus time for different values of interaction strength \(g\), at \(k \approx 0.74\) and \(\phi = -\pi/4\). Dashed curve for \(g = 0\), continuous curve for \(g = 0.5\) and dotted curve for \(g = 1\)

D. Poletti, G. Benenti, G. Casati, B. Li
The ratchet phenomenon can be used to measure atom interaction strength

STABILITY TO PERTURBATIONS:
- Kicking period fluctuations of size $T/100$ generate, after 30 kicks, a current $\bar{p} = -0.007$
- Gaussian pulses of width $T/10$ lead to $\bar{p} = -0.01$

Momentum averaged over the first 30 kicks (squares) and asymptotic momentum (triangles)
Inset: $g = 0.1, 0.2, 0.4, 1.0, 1.5$

D. Poletti, G. Benenti, G. Casati, B. Li
Why the interaction-induced ratchet effect?

For small values of g, approximate the free evolution of the BEC by a split-operator method:

$$
\psi(\theta, \tau) \approx e^{-i\frac{1}{2} \frac{\partial^2}{\partial \theta^2}} e^{-ig|\psi(\theta, \frac{\tau}{2})|^2 \tau} e^{-i\frac{1}{2} \frac{\partial^2}{\partial \theta^2}} \psi(\theta, 0)
$$

$$
|\psi(\theta, 6\pi)|^2 \approx \frac{1}{2\pi} \{1 + g \sin[4V_1(\theta)]\}, \quad V_1(\theta) = k \cos \theta
$$

so that the initial constant probability distribution is modified by a term symmetric under the transformation $\theta \to -\theta$.

The current after the kick at time $t = 6\pi$ is then given by

$$
\langle p(6\pi^+) \rangle = -\int_0^{2\pi} d\theta V_2'(\theta, \phi)|\psi(\theta, 6\pi)|^2 \approx -gk \sin(\phi) J_1(4k), \quad V_2 = k \cos(\theta - \phi)
$$

This current is in general different from zero, provided that $V_2(\theta, \phi)$ is not itself symmetric under $\theta \to -\theta$, that is, when $\phi \neq 0, \pi$.
Many-body quantum ratchet in a Bose-Einstein condensate, preprint

\[\phi \rightarrow -\phi \text{ symmetry} \]

Continuous line for \(\phi = -\pi/4 \), dashed line for \(\phi = 0 \) and dotted line for \(\phi = \pi/4 \)

D. Poletti, G. Benenti, G. Casati, B. Li
After substituting $\theta \rightarrow -\theta$ in the Gross-Pitaevskii equation, and taking into account that $V(-\theta, \phi, t) = V(\theta, -\phi, t)$, we obtain

$$i \frac{\partial}{\partial t} \tilde{\psi}(\theta, t) = \left[-\frac{1}{2} \frac{\partial^2}{\partial \theta^2} + g|\tilde{\psi}(\theta, t)|^2 + V(\theta, -\phi, t) \right] \tilde{\psi}(\theta, t), \quad \tilde{\psi}(\theta, t) \equiv \psi(-\theta, t)$$

Therefore, if $\psi(\theta, t)$ is a solution of the Gross-Pitaevskii equation, then also $\tilde{\psi}(\theta, t)$ is a solution, provided that we substitute $\phi \rightarrow -\phi$ in the potential V

The momentum $\langle \tilde{p}(t) \rangle$ of the wavefunction $\tilde{\psi}(\theta, t)$ is given by $\langle \tilde{p}(t) \rangle = -\langle p(t) \rangle$, where $\langle p(t) \rangle$ is the momentum of $\psi(\theta, t)$

Since we start with an even wavefunction, $\tilde{\psi}(\theta, 0) = \psi(-\theta, 0) = \psi(\theta, 0)$, then changing $\phi \rightarrow -\phi$ changes the sign of the momentum of the wavefunction at any later time
Evolution of non-condensed particles

When studying the dynamics of a kicked BEC, it is important to take into account the proliferation of noncondensed atoms: actually, strong kicks may lead to thermal excitations out of equilibrium and destroy the condensate, rendering the description by the Gross-Pitaevskii equation meaningless.

Let us show that, for the parameter values considered in the previous figures, the number of noncondensed particles is negligible compared to the number of condensed ones.
Many-body quantum ratchet in a Bose-Einstein condensate, preprint

Linear stability analysis

At $T = 0$ the mean number of noncondensed particles is

$$\delta N(t) = \sum_{j=1}^{\infty} \int_{0}^{2\pi} d\theta |v_j(\theta, t)|^2,$$

$$i \frac{\partial}{\partial t} \begin{bmatrix} u_j(\theta, t) \\ v_j(\theta, t) \end{bmatrix} = \begin{bmatrix} H_1(\theta, t) & H_2(\theta, t) \\ -H_2^*(\theta, t) & -H_1^*(\theta, t) \end{bmatrix} \begin{bmatrix} u_j(\theta, t) \\ v_j(\theta, t) \end{bmatrix},$$

$$H_1(\theta, t) = H(\theta, t) - \mu(t) + gQ(t)|\psi(\theta, t)|^2Q(t)$$

$$H(\theta, t) = -\frac{1}{2} \frac{\partial^2}{\partial \theta^2} + g|\psi(\theta, t)|^2 + V(\theta, \phi, t)$$

mean-field Gross-Pitaevskii Hamiltonian

$\mu(t)$ chemical potential $[H(\theta, t)\psi(\theta, t) = \mu(t)\psi(\theta, t)]$

$Q(t) = 1 - |\psi(t)\rangle\langle\psi(t)|$ projects orthogonally to $|\psi(t)\rangle$

$$H_2(\theta, t) = gQ(t)\psi^2(\theta, t)Q^*(t)$$

D. Poletti, G. Benenti, G. Casati, B. Li
The number δN of noncondensed particles, depending on the stability or instability of the condensate, grows polynomially or exponentially:

The transition from stability to instability takes place at $g = g_c \approx 1.7$

At $g > g_c$, thermal particles proliferate exponentially fast, $\delta N \sim \exp(rt)$, leading to a significant depletion of the condensate after a time $t_d \sim \ln(N)/r$

At $g < g_c$, the growth rate $r = 0$ and the number of noncondensed particles can be negligible up to long times: $\delta N \approx 1$ (10) after 30 kicks at $g = 0.5$ (1.5); $\delta N \ll N \sim 10^3 - 10^5$

D. Poletti, G. Benenti, G. Casati, B. Li
Remarks on experimental feasibility

The torus-like potential confining the BEC may be realized by means of optical billiards

The kicks may be applied using a periodically pulsed strongly detuned laser beam with a suitably engineered intensity [Mieck and Graham, J. Phys. A 37, L581 (2004)]

The feasibility is also supported by the latest progresses in the realization of BECs in optical traps such as the 87Rb BEC in a quasi-one-dimensional optical box trap, with condensate length $\sim 80 \mu m$, transverse confinement $\sim 5 \mu m$, and number of particles $N \sim 10^3$ [T.P. Meyrath et al., Phys. Rev. A 71, 041604(R) (2005)]

Sequences of up to 25 kicks have been applied to a BEC of 87Rb atoms confined in a static harmonic magnetic trap, with kicking strength $k \sim 1$ and in the quantum antiresonance case for the kicked oscillator model, $T = 2\pi$ [G.J. Duffy et al., Phys. Rev. A 70, 041602(R) (2004)]

The interaction strength g can be tuned over a very large range using a Feshbach resonance
Quantum trajectories approach

An open quantum system becomes, in general, entangled with its environment, and therefore its state is mixed and described by a density matrix. Its evolution is ruled, under the assumption that the environment is Markovian, by a master equation. Solving this equation for a complex many-level system is a prohibitive task in terms of memory cost.

Quantum Trajectories allow us to store only a stochastically evolving state vector, instead of a density matrix.

This has an enormous advantage in memory requirements: if the Hilbert space has size N, we store only a state vector of size N instead of a density matrix of size $N \times N$.

By averaging over many runs we get the same probabilities (within statistical errors) as the ones obtained by solving the density matrix directly.
Quantum trajectories in the Markov approximation

If a system interacts with the environment, its state is described by a density operator \(\rho \). Under the Markov assumption, the dynamics of the system is described by a (Lindblad) master equation:

\[
\dot{\rho} = -\frac{i}{\hbar}[H_s, \rho] - \frac{1}{2} \sum_k \{L_k^\dagger L_k, \rho\} + \sum_k L_k \rho L_k^\dagger,
\]

where \(H_s \) is the system’s Hamiltonian, \(\{ , \} \) denotes the anticommutator and \(L_k \) are the Lindblad operators, with \(k \in [1, \ldots, M] \) (the number \(M \) depending on the particular model of interaction with the environment).

- The first two terms of the above equation can be regarded as the evolution performed by an effective non-hermitian Hamiltonian, \(H_{\text{eff}} = H_s + iK \), with
\[K = -\hbar/2 \sum_k L_k^\dagger L_k : \]

\[-\frac{i}{\hbar} [H_s, \rho] \cdot \frac{1}{2} \sum_k \{ L_k^\dagger L_k, \rho \} = -\frac{i}{\hbar} [H_{\text{eff}} \rho - \rho H_{\text{eff}}^\dagger]. \]

- The last term is the one responsible for the so called quantum jumps

If the initial density matrix describes a pure state \(\rho(t_0) = |\phi(t_0)\rangle \langle \phi(t_0)| \), then, after an infinitesimal time \(dt \), it evolves into the statistical mixture

\[
\rho(t_0 + dt) = \rho(t_0) - \frac{i}{\hbar} [H_{\text{eff}} \rho(t_0) - \rho(t_0) H_{\text{eff}}^\dagger] dt + \sum_k L_k \rho(t_0) L_k^\dagger dt \\
\approx (I - \frac{i}{\hbar} H_{\text{eff}} dt) \rho(t_0) (I + \frac{i}{\hbar} H_{\text{eff}}^\dagger dt) + \sum_k L_k \rho(t_0) L_k^\dagger dt \\
= (1 - \sum_k dp_k) |\phi_0 \rangle \langle \phi_0 | + \sum_k dp_k |\phi_k \rangle \langle \phi_k |,
\]
where the probabilities \(dp_k = dt\langle \phi(t_0)|L_k^\dagger L_k|\phi(t_0)\rangle \), and the (normalized) new states are defined by

\[
|\phi_0\rangle = \frac{(I - iH_{\text{eff}} dt/\hbar)|\phi(t_0)\rangle}{\sqrt{1 - \sum_k dp_k}}, \quad |\phi_k\rangle = \frac{L_k|\phi(t_0)\rangle}{||L_k|\phi(t_0)\rangle||}.
\]

Therefore, with probability \(dp_k \) a jump occurs and the system is prepared in the state \(|\phi_k\rangle \). With probability \(1 - \sum_k dp_k \) there are no jumps and the system evolves according to the effective Hamiltonian \(H_{\text{eff}} \). (normalization is included because the evolution is non-hermitian)
Numerical method (Monte Carlo wave function approach)

• Start the time evolution from a pure state $|\phi(t_0)\rangle$

• At intervals dt much smaller than the time scales relevant for the evolution of the system, choose a random number ϵ from a uniform distribution in the unit interval $[0, 1]$

 1) If $\epsilon \leq dp$, where $dp = \sum_k dp_k$, the state of the system jumps to one of the states $|\phi_k\rangle$ (to $|\phi_1\rangle$ if $0 \leq \epsilon \leq dp_1$, to $|\phi_2\rangle$ if $dp_1 < \epsilon \leq dp_1 + dp_2$, and so on)

 2) if $\epsilon > dp$ the evolution with the non-hermitian Hamiltonian H_{eff} takes place and we end up in the state $|\phi_0\rangle$

• Repeat this process as many times as $n_{\text{steps}} = \Delta t/dt$, where Δt is the total evolution time
This procedure describes a stochastically evolving wave vector, and we say that a single evolution is a quantum trajectory.

- Average over different runs to recover, up to statistical errors, the probabilities obtained using the density operator. Given an operator A, we can write the mean value $\langle A \rangle_t = \text{Tr}[A \rho(t)]$ as the average over N trajectories:

$$\langle A \rangle_t = \lim_{N \to \infty} \frac{1}{N} \sum_{i=1}^{N} \langle \phi_i(t) | A | \phi_i(t) \rangle$$

There is also an advantage in computation time: in general $N \approx 100 - 500$ trajectories are needed in order to obtain a satisfactory statistical convergence, so that there is an advantage in computer time provided that $N > N$.

Quantum trajectories and stochastic Schrödinger equation

A quantum trajectory represents a single member of an ensemble whose density operator satisfies the corresponding master equation. This picture can be formalized by means of the nonlinear stochastic Schrödinger equation

\[
|d\phi\rangle = -iH|\phi\rangle dt - \frac{1}{2} \sum_k (L_k^\dagger L_k - \langle \phi | L_k^\dagger L_k | \phi \rangle)|\phi\rangle dt
\]

\[
+ \sum_k \left(\frac{L_k}{\sqrt{\langle \phi | L_k^\dagger L_k | \phi \rangle}} - I \right) |\phi\rangle dN_k.
\]

The stochasticity is due to the measurement results: we think that the environ-
ment is actually measured (as it is the case in indirect measurement models) or simpler, that the contact of the system with the environment produces an effect similar to a continuous (weak) measurement.

The nonlinearity appears due to the renormalization of the state vector after each measurement process.

The stochastic differential variables dN_k are statistically independent and represent measurement outcomes. Their ensemble mean is given by $M[dN_k] = \langle \phi | L_k \dagger L_k | \phi \rangle dt$. The probability that the variable dN_k is equal to 1 during a given time step dt is $\langle \phi | L_k \dagger L_k | \phi \rangle dt = dp_k$. Therefore, most of the time the variables dN_k are 0 and as a consequence the system evolves continuously by means of H_{eff}. However, when a variable dN_k is equal to 1, a quantum jump occurs. Differently from the master equation for the density operator, the stochastic Schrödinger equation represents the evolution of an individual quantum system, as exemplified by a single run of a laboratory experiment.
An example from quantum optics: spontaneous emission

Let us consider the simplest, zero temperature instance of the quantum optics master equation

$$\dot{\rho} = -\frac{i}{\hbar} [H, \rho] - \frac{\gamma}{2} (\sigma_- \sigma_+ \rho + \rho \sigma_- \sigma_+) + \gamma \sigma_+ \rho \sigma_-,$$

where the Hamiltonian $H = \frac{1}{2} \hbar \omega_0 \sigma_z$ describes the free evolution of a two-level atom, γ is the atom-field coupling constant and $\sigma_{\pm} = \frac{1}{2} (\sigma_x \pm \sigma_y)$

In this case there is a single Lindblad operator $L_1 = \sqrt{\gamma} \sigma_+$ and a jump is a transition from the excited state ($|1\rangle$) to the ground state ($|0\rangle$) of the atom

Starting from an initial pure state $|\phi(t_0)\rangle = \alpha |0\rangle + \beta |1\rangle$ and evolving it for an
infinitesimal time dt, the probability of a jump in a time dt is given by

$$dp = \langle \phi(t_0) | L_1^\dagger L_1 | \phi(t_0) \rangle dt = \gamma \langle \phi(t_0) | \sigma^- \sigma^+ | \phi(t_0) \rangle dt = \gamma p_e(t_0) dt,$$

where $p_e(t_0) = |\beta|^2$ is the population of the excited state $|1\rangle$ at time t_0.

If a jump occurs, the new state of the atom is

$$|\phi_1\rangle = \frac{L_1 |\phi(t_0)\rangle}{||L_1|\phi(t_0)\rangle||} = \frac{\sqrt{\gamma} \sigma^+ (\alpha |0\rangle + \beta |1\rangle) \sqrt{dt}}{\sqrt{dp}} = \frac{\beta}{|\beta|} |0\rangle.$$

In this case, the transition $|1\rangle \rightarrow |0\rangle$ takes place and the emitted photon is detected. As a consequence, the atomic state vector collapses onto the ground state $|0\rangle$.
If instead there are no jumps, the system's evolution is ruled by the non-Hermitian effective Hamiltonian \(H_{\text{eff}} = H - i \frac{\hbar}{2} L_1^\dagger L_1 = H - i \frac{\hbar}{2} \gamma \sigma_- \sigma_+ \), so that the state of the atom at time \(t_0 + dt \) is

\[
|\phi_0\rangle = \frac{(I - i \frac{\hbar}{\gamma} H_{\text{eff}} dt) |\phi(t_0)\rangle}{\sqrt{1 - d_p}} = \frac{(1 - i \frac{\omega_0}{2} dt) \alpha |0\rangle + (1 + i \frac{\omega_0}{2} dt - \frac{\gamma}{2}) \beta |1\rangle}{\sqrt{1 - \gamma |\beta|^2 dt}}
\]

The normalization factor \(\frac{1}{\sqrt{1 - d_p}} \) is due to the fact that, if no counts are registered by the photodetector, then we consider more probable that the system is unexcited.

To see this, let us consider the evolution without jumps in a finite time interval, from \(t_0 \) to \(t_0 + t \). We obtain

\[
|\phi_0(t_0 + t)\rangle = \frac{\alpha \exp \left[-i \frac{\omega_0}{2} (t - t_0) \right] |0\rangle + \beta \exp \left[(i \frac{\omega_0}{2} - \frac{\gamma}{2}) (t - t_0) \right] |1\rangle}{\sqrt{\alpha^2 + \beta^2}} \exp[-\gamma(t - t_0)]
\]
Note that as $t \to +\infty$ the state $|\phi_0(t)\rangle \to |0\rangle$ (up to an overall phase factor). That is, if after a long time we never see a count, we conclude that we have been in the ground state $|0\rangle$ from the beginning.
Dissipative quantum chaos: transition from wave packet collapse to explosion

The instability of classical dynamics leads to exponentially fast spreading of the quantum wave packet on the logarithmically short Ehrenfest time scale

\[t_E \sim \frac{|\ln \hbar|}{\lambda} \]

\(\lambda \) Lyapunov exponent, \(\hbar \) effective Planck constant

After the logarithmically short Ehrenfest time a description based on classical trajectories is meaningless for a closed quantum system

What is the interplay between wave packet explosion (delocalization) induced by chaotic dynamics and wave packet collapse (localization) caused by dissipation?

G.G. Carlo, G.Benenti, D.L.Shepelyansky
A model of dissipative chaotic dynamics

Markovian master equation
\[\dot{\hat{\rho}} = -i[\hat{H}, \hat{\rho}] - \frac{1}{2} \sum_{\mu} \{\hat{L}_{\mu}^{\dagger} \hat{L}_{\mu}, \hat{\rho}\} + \sum_{\mu} \hat{L}_{\mu} \hat{\rho} \hat{L}_{\mu}^{\dagger} \]

Kicked rotator Hamiltonian
\[\hat{H} = \frac{\hat{I}^2}{2} + k \cos(\hat{x}) \sum_{m=-\infty}^{+\infty} \delta(\tau - mT) \]

Dissipation described by the Lindblad operators
\[\hat{L}_1 = g \sum_{I} \sqrt{I + 1} |I\rangle \langle I + 1|, \quad \hat{L}_2 = g \sum_{I} \sqrt{I + 1} | -I \rangle \langle -I - 1| \]

At the classical limit, the evolution of the system in one period is described by the Zaslavsky map
\[\begin{cases} I_{t+1} = (1 - \gamma)I_t + k \sin x_t, \\ x_{t+1} = x_t + TI_{t+1}, \end{cases} \]

G.G. Carlo, G. Benenti, D.L. Shepelyansky
Dissipative quantum chaos: transition from wave packet collapse to explosion,

Collapse to explosion transition
(going from strong to weak dissipation)

\[K = 7, \ h = 0.012, \ \gamma = 0.5 \text{ and } \gamma = 0.01 \]

G.G. Carlo, G.Benenti, D.L.Shepelyansky
Classical-like evolution of quantum trajectories

\[f \equiv \langle p \rangle_{t+1} - (1 - \gamma) \langle p \rangle_t, \quad \langle p \rangle_t = \langle x \rangle_t - \langle x \rangle_{t-1} \]

From classical dynamics we expect \(f(x) = K \sin x \) - Quantum fluctuations \(\propto \sqrt{\hbar} \)

G.G. Carlo, G.Benenti, D.L.Shepelyansky
Wave packet dispersion

\[\sigma_t = \sqrt{(\Delta x)_t^2 + (\Delta p)_t^2}, \quad \text{cumulative average } \bar{\sigma}_t \equiv \frac{1}{t} \sum_{j=1}^{t} \sigma_j \]

\((K = 7, \hbar = 0.012) \)

G.G. Carlo, G.Benenti, D.L.Shepelyansky

Localization - delocalization crossover

\[\overline{\sigma}_s \equiv \bar{\sigma} / \sqrt{\hbar} \text{ scaled dispersion} \]

G.G. Carlo, G.Benenti, D.L.Shepelyansky
Ehrenfest explosion

Due to the exponential instability of chaotic dynamics the wave packet spreads exponentially and for times shorter than the Ehrenfest time we have \(\sigma_t \sim \sqrt{\hbar} \exp(\lambda t) \)

The dissipation localizes the wave packet on a time scale of the order of \(1/\gamma \)

Therefore, for \(1/\gamma \ll t_E \sim |\ln \hbar|/\lambda \), we obtain \(\bar{\sigma} \sim \sqrt{\hbar} \exp(\lambda/\gamma) \ll 1 \)

In contrast, for \(1/\gamma > t_E \) the chaotic wave packet explosion dominates over dissipation and we have complete delocalization over the angle variable

In this case, the wave packet spreads algebraically due to diffusion for \(t > t_E \): for \(t \gg t_E \) we have \(\sigma_t \sim \sqrt{D(K)t}, \ D(K) \approx K^2/2 \) being the diffusion coefficient; this regime continues up to the dissipation time \(1/\gamma \), so that \(\bar{\sigma} \sim \sqrt{D(K)/\gamma} \)

G.G. Carlo, G.Benenti, D.L.Shepelyansky
The transition from collapse to explosion (Ehrenfest explosion) takes place at

\[t_E \sim \frac{|\ln \hbar|}{\lambda} \sim \frac{1}{\gamma} \]

Therefore, even for infinitesimal dissipation strengths the quantum wave packet is eventually localized when \(\hbar \to 0 \): we have \(\lim_{\hbar \to 0} \sigma = 0 \); in contrast, in the Hamiltonian case (\(\gamma = 0 \)) \(\lim_{\hbar \to 0} \sigma = \infty \).

Only for open quantum systems the classical concept of trajectory is meaningful for arbitrarily long times; on the contrary, for Hamiltonian systems a description based on wave packet trajectories is possible only up to the Ehrenfest time scale.
Conclusions and prospects

- Cold atoms and Bose-Einstein condensates exposed to time-dependent standing waves of light provide an ideal test bed to explore complex quantum dynamics.

- Quantum ratchets: study the impact of dynamical effects such as bifurcations on the ratchet current.

- Quantum many-body ratchet effect in a BEC: find different models (beyond periodic motion).

- Ehrenfest explosion: investigate the dynamical stability of condensates subjected to chaotic dynamics and dissipation.