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General consideration on thermal engines

Upper bound to efficiency given by the Carnot efficiency:

Carnot efficiency obtained for quasi-static
transformation (zero extracted power)

The 1deal Carnot engine 1s a reversible machine, since
there 1s no dissipation (no entropy production)



Carnot efficiency at finite power
with breaking Onsager symmetry?
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Constraints from thermodynamics

POSITIVITY OF THE ENTROPY PRODUCTION:
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Breaking Onsager symmetry

Onsager reciprocal relations reflect at the macroscopic level
the time-reversal symmetry of the microscopic dynamics,
invariant under the transformation:

T(T’,p, t) = (ra_pa _t) » ij — ij

Ex: the heat flow per unit voltage (related to Peltier coefficient) 1s
equal to the charge flow per unit of temperature difference (related
Seebeck coefficient)

With an applied magnetic field one instead obtains
Onsager-Casimir relations:

TB(rapataB) = (r?_pv _ta _B) »L]k:(B) — Lk](—B)

but in principle one could : :
Lix(B) # Li;(B
break the Onsager symmetry: jk(B) # Li;j(B)



Linear response: Maximum efficiency
depends on two parameters
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At B = 0 there is time-reversibility and:
asymmetry parameter r = 1
the efficiency only depends on y(z = 1) = ZT

Tmax =— T)jC X




Output power at maximum efficiency
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max 4 Lee

When time-reversibility is broken, within linear
response it is not forbidden from the second law to have
simultaneously Carnot efficiency and non-zero power.

Terms of higher order in the entropy production,
beyond linear response, will generally be non-zero.
However, iwrrespective how close we are to the
Carnot efficiency, we could in principle find small
enough forces such that the linear theory holds.

[G.B., K. Saito, G. Casati, PRL 106, 230602 (2011)]



Reversible part of the currents
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j=e.,h -
: L,J + le
J;rr = Z 5 ffrj
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The reversible part of the currents does not contribute to
entropy production

y = geje + ffrhfh = Ji,rrffe + J,ilrrffh

Possibility of dissipationless transport?

[K. Brandner, K. Saito, U. Seifert, PRL 110, 070603 (2013)]



How to obtain asymmetry in the Seebeck coefficient?

For non-interacting systems, due to the symmetry properties
of the scattering matrix » S(B) = S5(—B)

This symmetry does not apply when electron-phonon and
electron-electron interactions are taken into account

Let us consider the case of partially coherent transport, with
iInelastic processes simulated by “conceptual probes”
mimicking inelastic scattering (Buttiker, 1988).

thermalize
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Non-interacting multi-terminal bound
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Bounds with electron-phonon scattering

Efficiency bounded by the non-negativity of the entropy
production of the original three-terminal junction.

[ Yamamoto, Entin-Wohlman, Aharony, Hatano; PRB 94, 121402(R) (2015)]



Power-efficiency trade-off
For heat engines described as Markov processes:
P <A(nc—n)
[N. Shiraishi, K. Saito, H. Tasaki, PRL 117, 190601 (2016)]

The prefactor A 1s system-dependent and may be
arbitrarily large, for instance diverge close to a phase

transition
[Fazio and Campisi, Nature Comm. 7, 11895 (2016)]

Moreover, the problem remains open for a generic
purely Hamiltonian two-terminal system with
Interactions



Onsager relations
with broken time-reversal symmetry

Onsager relations under an applied magnetic field
remain valid:

1) for noninteracting systems

2) 1f the magnetic field 1s constant
[Bonella, Ciccotti, Rondoni, EPL 108, 60004 (2014)]

What about for a generic, spatially dependent
magnetic field?



Symmetry without magnetic field inversion

H = Z[pz_g;lz QZV7”
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Analytical result for B = B(x) k

Landau gauge: A(z)j
Equations of motion
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Numerics for a generic magnetic field

Use a stochastic model for the reservoirs

Dynamics described by the multi-particle collision
method (Kapral method)



Multiparticle collision dynamics (Kapral model)

Streaming step: free propagation during a time t

— —

ry — T

+ 17iT

Collision step: random rotations of the velocities of the
particles 1n cells of linear size a with respect to the
center of mass velocity:

—

Uv; —

VCM + R

- (17} — VCM)

Total energy and total momentum are conserved



Numerical results and theoretical argument
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B(x) = gx generic 2D case:
B(x,y) = gsin[rz/(2L)]sin[ry/(2W)]
Theoretical argument: generic 3D case:
divide the system into small B = ¢(B.., By, B.).

Time-reversal trajectories without fz = sin[rz/(2L)], fy = sin[my/(2W)],

reversing the field for dV,, — 0 f» = sin|rz/(2H)
[Luo, GB, Casati, Wang; Phys Rev Research 2, 022009(R) (2020)]



Consequences for heat engines

From the award ceremony speech,
Nobel Prize for Chemistry 1968:
“...Onsager s reciprocal relations can
be described as a universal natural
law... It can be said that Onsagers
reciprocal relations represent a
further law making possible a
thermodynamic study of irreversible
processes..."

Onsager reciprocal relations much more general than
expected so far.

No-go theorem for finite power at the Carnot efficiency on
purely thermodynamic grounds?



Power-efficiency-fluctuations trade-off

Thermodynamic uncertainty relations, for steady-state
stochastic heat engines (rate equations, overdamped
Langevin dynamics)

1
For the work current (power) P 2 < 5 oA p

Ap = lim [P(t) - P]*t  P(t) mean power delivered
up to time t

Trade-off between the three desiderata of a heat

engine: 0 kT 3 1
nc—n Ap = 2

O=P

[Pietzonka and Seifert, PRL 120, 190602 (2018)]



Scattering theory for thermoelectricity

€

Charge current  Je =eJ, = 5 / dET(E)|fL(E) — fr(E)]
Heat current from reservoirs:
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Efficiency optimization (at a given power)

Find the transmission function that optimizes the
heat-engine efficiency for a given output power

Completely arbitrary Transmission function
transmission function of boxcar form

Optimize N_A____ -
for given
power ~—A—
0 > [
0 E, By
delta-function-like transmission step-flAmction transmission
A
Np----------------- Np-----
0E—0 P — P max
. > >
0 E. E 0 E, E

[Whitney, PRL 112, 130601 (2014); PRB 91, 115425 (2015)]



Fluctuations (scattering theory)

Power fluctuations derived from the Levitov-Lesovik
cumulant generating function
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For a boxcar transmission function:
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Power-efficiency-fluctuations trade-off
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[GB, G. Casati, J. Wang; Phys Rev E 102, 040103(R) (2020)]



Interacting, momentum-conserving systems

Example: one dimensional gas of elastically colliding
particles with unequal masses: m, M




Carnot efficiency at the thermodynamic limit
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Power-efficiency trade-oft:

overcoming the noninteracting bound
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Power-efficiency-fluctuations trade-oft:
Achieving the upper bound
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[GB, G. Casati, J. Wang; Phys Rev E 102, 040103(R) (2020)]



Overcoming the bound: periodically driven systems

Isothermal heat engine
H(t) = Hs(t) + Hg + Hsgr

P2 L 2 9
Hg(t) = o - 5 MWo
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2 mkw2 Ck 2
Hr + Hsp = Z ka 2 : (Xk B miw? a:)
k

[L. M. Cangemi, M. Carrega, A. De Candia, V. Cataudella,
G. De Filippis, M. Sassetti, G. B., arXiv:2009.10904]




Anti-adiabatic regime: approaching Carnot
at finite power and small fluctuations
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Required ingredients:
- breaking time-reversal

symmetry
- underdamped dynamics




Absolute negative mobility

ANM: permanent average motion against a static force,
as 1llustrated by the donkey, moving in the direction
opposite to the one which 1s required to it

Impossible at thermal equilibrium, a single heat bath
would perform work against the force

Investigated 1n non-equilibrium setups

[Cleuren, Van den Broeck, EPL 54, 1 (2001); Eichorn, Reimann, Hanggi,
PRL 88, 190601 (2002); Nagel et al., PRL 100, 217001 (2008),...]

ANM 1n equilibrium, for stochastic dynamics of a tracer

particle subject to two driving forces
[Cividini, Mukamel, Posch, J. Phys. A 51, 085001 (2018)]



Inverse Currents in Coupled transport (ICC) possible

For coupled flows it 1s allowed by thermodynamics to
have a current opposite to both thermodynamic forces

heat ( particle) current

hot

Id

2
high
concentr.

tration

Entropy production rate S=N1F1+ N2 F
Fi>0 (=1, 2)
one current can be negative,
with overall positive entropy production



Classical version of Lieb-Liniger model

y
H=) 5t 2 VE=x) V() =h for x<|r
' = V(x) = 0 otherwise

limitcaser — ()

Diatomic gas of particles m; € {M;, M,}

Easier for two colliding particle to overcome when the light
particle come from the hot end (higher relative velocity)



Self-organisation (phase separation)
in the far from equilibrium regime

(in a 1D Hamiltonian system)
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Negative cross-coetficient (Seebeck)
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[J. Wang, G. Casati, GB, PRL
124, 110607 (2020)]
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Inverse currents in coupled transport (I1CC)
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ICC already exists 1n the
linear response regime
and 1s enhanced 1n the
far-from-equilibrium
regime with phase
separation



Final remarks

Onsager reciprocal relations much more general than
expected so far: No-go theorem for finite power at the
Carnot efficiency on purely thermodynamic grounds?

Interactions are 1n principle useful to improve performance
of a steady-state (thermoelectric) engine

Periodically driven heat engines can overcome the steady-
state bound and allow to achieve all three desiderata of a
heat engine: efficiency close to the 1deal one, finite power
and small fluctuations.

Possible to build thermoelectric circuits exploiting ICC?



| & https://qtts.ifisc.uib-csic.es e @& W | Q Search

QTTS

Quantum Transport and Thermodynamics Society

Announcements Membership ~ Publications ~ Links Contact

Custom Search

A network of scientists dedicated to understanding the thermodynamics of quantum systems and quantum transport.




Quantum computation and information is a
rapidly developing interdisciplinary field. It
is not easy to understand its fundamental
concepts and central results without facing
numerous technical details. This book
provides the reader with a useful
guide. In particular, the initial
chapters offer a simple and self-
contained introduction; no previous
knowledge of quantum mechanics
or classical computation is required.

Various important aspects of quan-
tum computation and information
are covered in depth, starting from the foun-
dations (the basic concepts of computational
complexity, energy, entropy, and information,
quantum superposition and entanglement,
elementary quantum gates, the main quan-
tum algorithms, quantum teleportation, and

quantum cryptography) up to advanced
topics (like entanglement measures, quan-
tum discord, quantum noise, quantum
channels, quantum error correction, quan-
tum simulators, and tensor networks).

It can be used as a broad range
textbook for a course in quantum
information and computation,
both for upper-level undergraduate
students and for graduate
students. It contains a large
number of solved exercises, which
are an essential complement to the text, as
they will help the student to become
familiar with the subject. The book may also
be useful as general education for readers
who want to know the fundamental
principles of quantum information and
computation.

“Thorough introductions to classical computation and irreversibility, and a primer of quantum
theory, lead into the heart of this impressive and substantial book. All the topics — quantum
algorithms, quantum error correction, adiabatic quantum computing and decoherence are just
a few — are explained carefully and in detail. Particularly attractive are the connections between
the conceptual structures and mathematical formalisms, and the different experimental
protocols for bringing them to practice. A more wide-ranging, comprehensive, and definitive

text is hard to imagine.”
— Sir Michael Berry, University of Bristol, UK

“This second edition of the textbook is a timely and very comprehensive update in a rapidly
developing field, both in theory as well as in the experimental implementation of quantum
information processing. The book provides a solid introduction into the field, a deeper insight
in the formal description of quantum information as well as a well laid-out overview on several
platforms for quantum simulation and quantum computation. All in all, a well-written and
commendable textbook, which will prove very valuable both for the novices and the scholars in
the fields of quantum computation and information.”

—— Rainer Blatt, Universitit Innsbruck and 1QOQI Innsbruck, Austria

“The book by Benenti, Casati, Rossini and Strini is an excellent introduction to the fascinating
field of quantum information, of great benefit for scientists entering the field and a very useful
reference for people already working in it. The second edition of the book is considerably
extended with new chapters, as the one on many-body systems, and necessary updates, most
notably on the physical implementations.”

—— Rosario Fazio, The Abdus Salam International Centre  for Theoretical Physics, Trieste, Italy
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