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Outline

1) Thermoelectricity in the quantum coherent regime
(scattering theory, Landauer formula, energy filtering)

2) Thermoelectricity in the Coulomb blockade regime
(quantum dot model, kinetic equations)

3) Aspects of thermoelectricity 1n strongly interacting
systems

(phase transitions, power-efficiency trade-off, power-
efficiency-fluctuations trade-oft)



Volta and the discovery of thermoelectricity

(see Anatychuk et al,
“On the discovery of
thermoelectricity by
A.Volta”)

Fig. 3 Schematic of Volta’s experiment that resulted in the discovery of
thermoelectricity: A — metal (iron) arc: B — glasses with water; C and D — frog
parts placed in the glasses with water.

1794-1795: letters from Volta to Vassali. “I immersed for some half-
minute the end of such (iron) arc into boiling water and, without
letting it to cool down, returned to experiments with two glasses of
cold water. And it was then that the frog in water started
contracting...”



Traditional versus quantum thermoelectrics

quantum
thermoelectric

Quantum

Structures smaller than the
relaxation length (many
microns at low temperature);
quantum 1nterference effects;
Boltzmann transport theory
cannot be applied; efficiency
depends on geometry and size

[see G. B., G. Casati, K. Saito, R. S. Whitney, Phys. Rep. 694, 1 (2017)]

Relaxation length (tens of
nanometers at room
temperature) of the order of
the mean free path; inelastic
scattering (phonons)
thermalizes the electrons
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Noninteracting systems,
Energy filtering,
Landauer scattering theory
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The best thermoelectric
G. D. MAHAN*T AND J. O. SorFo%

ABSTRACT What electronic structure provides the larg-
est figure of merit for thermoelectric materials? To answer
that question, we write the electrical conductivity, ther-
mopower, and thermal conductivity as integrals of a single
function, the transport distribution. Then we derive the
mathematical function for the transport distribution, which
gives the largest figure of merit. A delta-shaped transport
distribution is found to maximize the thermoelectric proper-
ties. This result indicates that a narrow distribution of the
energy of the electrons participating in the transport process
is needed for maximum thermoelectric efficiency. Some pos-
sible realizations of this idea are discussed.




Heat-to-work conversion through energy filtering

(a) Direct contact - no energy filter
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[see G. B., G. Casati, K. Saito, R. S. Whitney, Phys. Rep. 694, 1 (2017)]



Energy filters in a thermocouple geometry
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(a) Thermocouple (pair of thermoelectrics) as heat-engine.
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(b) Thermocouple ( pair of thermoelectrics) as refrigerator.



What about phonons?
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Necessary both: (1) to reduce phonon transport; (i1) to have
an efficient working fluid (optimize the electron dynamics)



Reducing thermal conductance
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FIG. 2. Thermal conductance versus temperature for a straight nanowire and
four corrugated nanowires in the log-log scale.

C)

FIG. 1. SEM images of the straight (a) and the cormrugated (b) nanowires; (¢)
corresponds to the top view of the corrugated nanowire. The scale bars cor-
respond to (a) 2 um, (b) 2 um, and (¢) 300 nm.

[Blanc, Rajabpour, Volz, Fournier, Bourgeois, APL 103, 043109 (2013)]



Scattering theory

Scattering region
connected to
N terminals (reservoirs)

Describes elastic scattering (including the effect of a
disorder potential), but not electron-electron interactions
beyond Hartree approximation and electron-phonon
interactions



Transmission matrix

Probability for an electron with energy E to go from
(transverse) mode m of reservoir j to mode n of reservoir 1:

2 . .
Pin:jm(E) = |Sinsjm(E))] 8in;jm(E) scattering matrix elements

Ti(E) = Zpin;jm(E) transmission matrix elements

probabilities T;(E)>0  forall i, j, E

From conservation of current and condition of zero current

at zero bias:
D Ti(E) = N(E), Z Ti(E

i

From time reversal symmetry of the scatterer Hamiltonian:

Sin; jm(E —B) = Sj*m m(Ea B), Ti(E, B) = T(E, —B)



Landauer approach

Electrical current into the scatterer from reservoir 1:

> dE
.Iet — Z[ 5:] ‘Tu(E)] fJ(E)

Fermi function fi(E) = (1+exp[(E — ﬂi)/(kBTi)])_ls n; = ev;

Energy current into the scatterer from reservoir 1:

]un—Zf dE ’ u y( )]f;( )

AQ; = E — u; heat carried by an electron leaving reservoir i

> dE
Heat current: Jhi =) f - (E— i) [Ni(E) 8 — T§(E)] f(E).
j —00



Kirkhoff’s law of current conservation for electrical and
energy currents:

Y Jei=) Jui=0
Heat current not conserved:

.]h,i =.’u,i — Vi.’e,i, Z]h,i - = Z vi.’e,i Pgen — —Zivi.le,i
I i

Heat dissipated 1n the reservoirs: entropy production rate

S = — Z]h,i/Ti



Two-terminal (thermoelectric) power production

P

Right (R) n=—-—-

reservolr o J h’L
Iy Wy
P=|(ur—pr)/elJe

(Ty > TR, pr < R)  P,Jnp >0

Left (L)
reservoir

I, w

The upper bound to efficiency 1s given by the Carnot
efficiency (expected only at zero power, since finite

currents entail dissipation): Tr

— 1 - =t
le; T,



Scattering theory for two reservoirs

TiR(E) = Tre(E) > 0,

Conserved currents:

* dE
Jor = —Jur = f e qlE) () — (Bl

* dE
Jut = —Jug = / T ETlE) [(E) — ()]
Heat currents:

< dE
Jht = f (€ — 1) T(E) (E) — (B,

* dE
g = / (€ — 1) TB) U(E) — ACE)],

First law of thermodynamics:  Jaor +Jnr = (Vg —Vi)JeL



Thermoelectric efficiency (power production)

Charge current Je =eJ, = % /_ dET(E)|[fL(E) — fr(E)]

Heat current from reservoirs:

Jna=7 [ dEE = p)r(B)f(E) ~ fuE)

h
Efficiency:
P
== J_ (T, > Tg) (,uR > ,uL) P Jnr >0
h,L

(ur —pr)/e)de  (Br—pL) [2 dET(E)[fL(E) — fr(E)]

Jhr % dE(E — pu)T(E)[fr(E) — fr(E)]



Delta-energy filtering and Carnot efficiency

If transmission is possible only inside a tiny energy window
around E=FEx then n = KL — KR

Ey —pr
In the limit J, — 0, corresponding to reversible transport
Ey,—pr,  EBy—pur | Rl — prTr
— = E. =
TL TR * TL — TR

n=nc=1-1Tr/1L Carnot efficiency

Carnot efficiency obtained in the limit of reversible
transport (zero entropy production) and zero output

POWCT [Mahan and Sofo, PNAS 93, 7436 (1996);
Humphrey et al., PRL 89, 116801 (2002)]




Example: single-level quantum dot

Left (L)

Y oo

Rig

I;/h is the rate at which the dot state decays into reservoir i

T, (E)

A

1

-1/2

Ii+Ig

Tr(E) =

I' Tk

(E —Eo)? + 2(I1 + I'R)?



Short intermezzo: Cyclic thermal machines

The upper bound to efficiency 1s given by the Carnot
efficiency:

Carnot efficiency obtained for quasi-static
transformation (zero extracted power)

The 1deal Carnot engine 1s a reversible machine, since
there 1s no dissipation (no entropy production)



Finite-time thermodynamics:
endoreversible cyclic engines

Dissipation 1s due to finite thermal conductances
between heat reservoirs and the 1deal heat engine

Qn = Kutg(Tyg — Thi)

—Qc = Kete(Teoi — Te)

S 1s considered as a Carnot engine operating between
the internal temperatures Ty; and Tc; (T > Thi > Tci > Tc)

| =Tci/Tui = 1 + Qc/On



Output power:

Optimize power with respectto @ = Ty — Ty;

ﬂ:TCi—TC

\/KHTH + \/KcTC
Ku + VKc

2
Punax = KuK ( VT — VTc
max — BHAC
VKH+ VKC

Tyi=cNTy, Tci=cANTe, ¢




The efficient at maximum power (Curzon-Ahlborn
efficiency) 1s independent of the heat conductances:

T
77CA=1—\/T—I;=1—\/1—77C

[Yvon, 1955; Chambadal, 1957; Novikov, 1958;
Curzon and Ahlborn, Am. J. Phys. 43, 22 (1975)]

IIc

Within linear response: 7Nca = 5



Bekenstein-Pendry bound

There 1s an purely quantum upper bound on the heat

current through a single transverse mode
[Bekenstein, PRL 46, 923 (1981); Pendry, JPA 16, 2161 (1983) ]

For a reservoir coupled to another reservoir at T=0
through a N-mode constriction which lets particle flow at

all energies:

2
max _ T

22
h,l — 6hNkBTl



Maximum power of a heat engine

Since the heat flow must be less than the Bekenstein-
Pendry bound and the efficiency smaller than Carnot
efficiency also the output power must be bounded

Within scattering theory:

2
P < Prax = Aq”]— NEL(AT)?, A, =~ 0.0321,
1l
AT = Ty —Tr

[Whitney, PRL 112, 130601 (2014); PRB 91, 115425 (2015)]



Efficiency optimization (at a given power)

Find the transmission function that optimizes the
heat-engine efficiency for a given output power

Completely arbitrary Transmission function
transmission function of boxcar form

Optimize N_A____ -
for given
power ~—A—
0 > [
0 E, By
delta-function-like transmission step-flAmction transmission
A
Np----------------- Np-----
0E—0 P — P max
. > >
0 E. E 0 E, E

[ Whitney, PRL 112, 130601 (2014); PRB 91, 115425 (2015)]



Trade-off between power and efficiency

N
Carnot
efficiency —>K;

Efficiency

power generated, P,

Result from (nonlinear) scattering theory

[Whitney, PRL 112, 130601 (2014); PRB 91, 115425 (2015)]



Power-efficiency trade-off including phonons

)

“~<.no phonons
L J

eak phonons

Efficiency

strong phonons

0 Power output, P

[see Whitney, PRB 91, 115425 (2015)]



Boxcar transmission in topological insulators

20 10 0 10 20

Energy (meV)
Graphene nanoribbons - ﬁi 52
with heavy adatoms 2 11—
and nanopores PR,
[Chang et al., Nanolett., T
14, 3779 (2014)] : j |

Fermi Energy (meV)




Linear response for coupled (particle and heat) flows

Stochastic baths:ideal [ Th
gases at fixed temperature
and electrochemical 193 R
potential

Je — Leefe Le
+ Lenth Fe=AV/T (AV = Au/e)

Jn = LpeFe + LppFrn, T = AT/T?

Onsager relation (for time- AR = pr = KR
reversal symmetric systems): AT =T; —Tp
Lep = Lpe

Positivity of entropy production: ~ (we assume T, > Tg, pr < pig)
Lee 20, Lpp >0, detL>0



Onsager and transport coefficients

Je Lee

- (o). 5

AV JaT=0 T

J

X — (_,,) _ idetL
AT )j-0 T? L,
g _ AV 1 Ly,
- \AT),, T L

Note that the positivity of entropy production implies
that the (1sothermal) electric conductance G>0 and the
thermal conductance K>0



Local equilibrium

Under the assumption of local equilibrium we can
write phenomenological equations with VT and Vpu
rather than AT and Ap

( je — ﬂee(_vﬂ/eT) + /lth(l/T).

\ Jh = Ape(=Vu/eT) + AppV(1/T)
Jes Jh charge and heat current densities

In this case we connect Onsager coefficients to electric
and thermal conductivity rather than to conductances

= (). = (er)
VV ) or_g VI') . _




Linear response?

g ' (exhaust gases)

Tc ~ 270 — 300 K
(room temperature)

BMW GROUP

Figure 1| Integrating thermoelectrics into vehicles for improved fuel efficiency. Shown isa BMW 530i
concept car with a thermoelectric generator (yellow; and inset) and radiator (red/blue).

[Vining, Nat. Mater. 8, 83 (2009)]

Linear response for small temperature and electrochemical
potential differences (compared to the average temperature)
on the scale of the relaxation length

Exhaust pipe: temperature drop over a mm scale:

temperature drop of 0.003 K on the relaxation length scale
(of 10 nm)



Maximum efficiency

Within linear response and for steady-state heat to
work conversion:
— i — _(AV)Je — _Tge(Leege + Lehgjh)

QL I LpeFe + LppFp,

n

Find the maximum of # over &, for fixed Fj1.¢., over the
applied voltage AV for fixed temperature difference A7)

L det L
Maximum achieved for &, = L) © Fy,
Lhe Leeth

Maximum efficiency (for system with time-reversal symmetry)
VZT +1 -1
VZT +1+1

(TL ~ TR ~ T)

Thmax =— T]C
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Efficiency at maximum power

Output power P = —(AV)J, = =TF,(LeeFe + LepF)

Find the maximum of P over ¥, for fixed 3, (over the
applied voltage AV for fixed A7)

Leh

Maximum achieved for JF, = — F
2Lee
Maximum output power
T [?
Poax = 7 Leh FP=- SQG(AT)

Power factor  S2G



P quadratic function of ,, with maximum at half
of the stopping force:

:-Tr;s?wp — _ﬂ gjh, Je(grztop) _ O

Lee
P

stopping force

W

4

Efficiency at maximum power

nca Curzon-Ahlborn upper bound
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Efficiency versus power

P 1 P

P= T T S =drl-n = =g (ie )i ‘
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Linear response and Landauer formalism

The Onsager coefficients are obtained from the linear
response expansion of the charge and thermal currents

o 1B+ L AT+ Yy ey -
fu(E) = f(E) + 50 AT + 2 = f(E) = o

of 1

“OE  4kgT cosh®[(E — )/ 2kgT]

AT
(E - #)T + Ap

Lee — 62T[(), Leh — Lhe — eTlla th — TIQ

I, = %/: dE(E — p)"7(E) (-%)



Wiedemann-Franz law

Phenomenological law: the ratio of the thermal to the
electrical conductivity i1s directly proportional to the
temperature, with a universal proportionality factor.

K

—=LT

g

Lorenz number



Sommerfeld expansion

The Wiedemann-Franz law can be derived for low-
temperature non-interacting systems both within
kinetic theory or Landauer approach

In both cases 1t 1s substantiated by Sommerfeld
expansion. Within Landauer approach we consider

Jhr = % /_ o; dE(E — p)1(E)[fL(E) — fr(E)]

€

Jo=el, =5 [ dBr(B)L(E) - fn(E)

We assume smooth transmission functions z(E) in the

neighborhood of E=u.
. : T(E) ~ 7(u) + d;(;?) i (E—p)
=




To leading order in kgT/Er with Ep = u(T = 0)

() ? , dt(E)
Io~ —., [ ~ — (kgT
T h 1~ 3 ®BT)” =g

* N
I ~ 3 (kT )" 7(u)
)

e2 1 I? m2k3T
G =e’ly ~ — K=_—-(I—-21]~ B
eI ” T(1), (2 Io) a7 (1)

Neglected [;%/Ip with respect to I, which in turn
implies LeeLnn>>(Len)? and K ~ L, /T?

Wiedemann-Franz law:

KNT('Q ]CB 2T
G 3 e



Wiedemann-Franz law and thermoelectric efficiency

G52 52
T = — T ="
K e

Wiedemann-Franz law derived under the condition
LeeLnn>>(Len)? and therefore

ZT = Lgh/detL ~ Lgh/Leeth < 1

Wiedemann-Franz law violated in

- low-d
Fermi |

1mensional interacting systems that exhibit non-
1quid behavior

- (sm

1) systems where transmission can show

significant energy dependence



(Violation of) Wiedemann-Franz law in small systems

- 1.0 T T, T
: < T > AE
10 3 : resonant @: O-SihM
- mixing Y—
qo - . (1)3.2 -1 0 1 2
~ | | .
< | TAE . m T < AE
1 us E s
cotunneling _!'J.J,
“ hay 0 I
T -'8.50 -0.25 0.00 0.25 0.50
., 10
0'1 a2 Lol Ll L il Lol L ln ol Lo L\;J)’
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(Bosisio, Balachandran, Benenti, PRB 86, 035433 (2012);
see also Vavilov and Stone, PRB 72, 205107 (2005))



Mott’s formula for thermopower

For non-interacting electrons (thermopower vanishes
when there 1s particle-hole symmetry)

9
g_1h _ 1 Jooo dE(E — p)T (E)(—a—é) 1

= (
el' I, €T ffooo dET(E) ( gé) T eT

Consider smooth transmissions 7(E) = 7(u) + 7' (1) (E — )

E — p)

mksT m'(p) kT dInG(E)

S = =
3e T(w) 3e dE

E=un

Electron and holes contribute with opposite signs: we
want sharp, asymmetric transmission functions to have
large thermopowers (ex: resonances, Anderson QPT,
see Imry and Amir, 2010), violation of WF, large ZT.



Metal-insulator 3D Anderson transition

¢

= of A(E - E,)", ifE > E,,,
= /dE"O(E) (—@) o0(E) = |
o 0, f E<E,,
3 I I I
x conductivity critical
25}

exponent —]
[G.B., H. Ouerdane, C. Goupil, T T
arXi1v:1602.06590; Comptes sk e ’
Rendus Physique, in press] i _
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Energy filtering

K (E—w?)—(E-nf

G e2T

For good thermoelectric we desire violation of WF law:
K/G—0

(E — p))’

LT = 2
(E — pm)?) —((E — )

No dispersion with delta-energy filtering: ZT diverges



Thermoelectricity in the
Coulomb blockade regime,
Kinetic equations.
Quantum dot model



Multilevel interacting quantum dot

Ji Ji‘,]{‘\A

Reservoir 1 0D Reservoir a

Discrete energy levels: 1deal to implement energy filtering

Study the effects of Coulomb interaction between electrons

[Erdmann, Mazza, Bosisio, G.B., Fazio, Taddei1 PRB 95, 245432 (2017)]



Sequential (single-electron) tunnelling regime
E, (withp=1,2,...) single-electron levels of the QC

C' capacitance

N number of electrons 1n the dot
(Ne)?/2C electrostatic (Coulomb) interaction

I'o(p) tunneling rate from level p to reservoir a

Weak coupling to the reservoirs: thermal energy k5T, level
spacing and charging energy much larger than the
coupling energy A T, (p) between the QD and the
reservolrs: charge quantized n, =0orn, =1 N=>n,

Electrostatic energy U (N) = EcN?2,

single-electron charging energy E¢ = e?/2C



Energy conservation
Configuration determined by occupation numbers {7}
Non-equilibrium probability P({n;})
Energy conservation for tunnelling into or from reservoirs:

E,+U(N)=E"™(N)+U(N —1)
E™(N)+U(N)=E,+U(N +1)



Kinetic equations

One kinetic equation for each configuration:

0

EP (ini}) = - Z 5"1?’0P ({ni}) La(p)fa (Em(N))

— 6 1P ({1} Ta(p) [1 = fu (EF(N))]

+ 3 0n, 0P ({ni},mp = ) Ta(p) [1 = fu (B™(N +1)

+ 3 0n, 1P ({ni},np = 0)Ta(p) fa (E™(N - 1)),

j2led

p({ni}vnp:1):p({nla”'7np—17]-9np+17°"})
P({ni},np =0)=P({n1,...,np—1,0,np41,...})

Stationary solution: 9P/t =0, >, P({n:}) =1



Steady-state currents

Charge current:

Jow= ¢33 P{n )T w(D){ Oy 0 fal E(N)) = G, 1 [1 = fa( E™(N))]}

p=1{n;}
Energy current:
=SS P o(9){0n, 0 fa(E™(N)) E™(N)
o by all — fa( B (N)E™(N))

Heat current:
Jh,a — Ju,a — (/—La/e)Je «



Quantum limait

Energy spacing and charging energy much bigger than kgT

Analytical results for equidistant levels: E,—FE, 1 = AFE

Q[kB /7]

ZT
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(AE/kpT)?
(energy filtering)

ZT* = 0.44




Coulomb interaction may enhance
the thermoelectric performance of a QD

Compare 1nteracting and non-interacting two-terminal QD

with the same energy spacing
Thermal conductance

«10-3 suppressed by Coulomb
ool — xkm " ] interaction: ZT 1is greatly
AT increased.

For a single level K=0
(charge and heat current
proportional). For at least two
levels Coulomb blockade
prevents a second electron to
L= enter when one 1s already

kg T] there .(electrostatic energy to
be paid).

K[k%T/h)
=

0.0 L=’
145 150 1

(1
t



Strongly interacting systems,
Electronic Phase transitions,
Power-efficiency trade-off,
Power-efficiency-fluctuations trade-off,
Carnot efficiency at finite power?
Generality of Onsager reciprocal relations



Short intermezzo: a reason why interactions
might be interesting for thermoelectricity

Jh
& < thermal conductance at zero voltage
AV=0

AT

KI
T = — 1, = —
YK K

If the ratio K’/K diverges, then the Carnot efficiency
is achieved



Thermodynamic properties of the working fluid

N N
o |y oT |,
dU ON N 1 [/ dU oU
d7=-Eavy = =_E dju dT | + = ( =2 dN+ S| dar
T T T \ ol oT |, T \aN |, aT |y
coupled equations: ON ON
Chw=—|, Q&= —
o |, oT |,
dN = Cyndp + Cy AT,
1aN| [/ aU
=il Lanl. =H)
d.¥ = Condu + C 5T, I iy \ N |p
capacity matrix C Cou— L]0U  ON <3U _ )
pacty 7 T[BTN+8Tﬂ oN |,

(N = Com (Vining, MRS Symp. 478, 3 (1997))



)
(e = ( aiﬂ) = (, entropy capacity at constant
7

Setting AN=0 1n the coupled equations:

Oy = il _ detC  entropy capacity at constant N
aT ) CnNN



Thermodynamic cycle
N —dudN

NC d.AT

—dpdN — —dp(Cuwvdp + CndT )

N = =

maximum efficiency

(over du at fixed dT):
: VI T+1—1
] =
Jmax IC JZoT F 1+ 1

thermodynamic figure of merit:
C2
N.&# 1.

ZinT = = —
. detc _ /MN

Td.& T(Codp 4+ Cso9dT)



Analogy with a classical gas

N_>V7 H— =P
n  dpdV

N N
425K (e aSdT

395K

g . ,

=) ap | 14+ Lyl = —

g 4 dv - Cy

é |heat capacity at constant p or V
> /d'T '
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I
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Fig. 5: PV diagram for Freon-12 (CCL:F;). The two phase region is light gray and the C — T
liquid is the darker gray region to the left. Isotherms are indicated by light lines and a v - ‘
typical dPdV element is indicated by the rectangle. a T v
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Fig. 4: Specific heat ratios, ypy for a PV system (Freon 12) and thermal conductivity ratios,
YE—~1+ZT, for sclected n-type semiconductor alloys as a function of temperature.
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(Vining, MRS Symp. 478, 3 (1997))



— 2D fluctuation Cooper pairs

10 — 2D Fermi gas — 1 1 015
— 2D Bose gas
— 3D Bose gas
8 - —
— —0.1
3
N‘-‘
— —0.05
| 1 |
0 0 3 0
€

e=InT/T.~(T —T.)/T.

(Ouerdane et al., PRB 91, 100501 (2015))



Power-efficiency trade-off:
[s 1t possible to overcome the non-interacting bound?

Noninteracting systems: for P/Pmax<<1,

T, P
N(P) < max (P) = e (1 — Bq\/Tf B ) ,

B,~ 0478 (T, > Tg)

Bound not favorable for power-efficiency trade-off;
due to the fact that delta-energy filtering 1s the only
mechanism to achieve Carnot for noninteracting
systems

For interacting systems 1t 1s possible to achieve Carnot
without delta-energy filtering



Momentum-conserving systems

Consider nonintegrable systems with a single relevant
constant of motion, notably momentum conservation.
From an argument based on Green-Kubo formula:

O ~ Age ~ N\
7 S?

. l—«
S ~ A/, ~ A° T = - T oxc A ™% — oo when A — o0

Kk ~ detA/Lee~ A
(< 1)

For integrable systems: detdoc A2 k o< A, ZT o< A"

(G.B., G. Casati, J. Wang, PRL 110, 070604 (2013))



Example: 1D interacting classical gas

Consider a one dimensional gas of elastically colliding
particles with unequal masses: m, V

For M =m  J,=11vL, —1rYr  (Ju=Jy+pJ))

integrable model
(ineg ) Jp:’}’L—’}’R- ZT =1 (at p=0)

For M # m ZT depends on the system size



Quantum mechanics needed:
Relation between density and electrochemical potential

Reservoirs modeled as ideal (1D) gases
, « Maxwell-Bolzmann

m™m ™muv . . .
fa(v) = ST exp (— 2kBTa) dlstrlbu’_upn of
velocities
Vo = pa/ d’U’Ufa(’U) — pa\/kQBTa injeCtion rates
0 cm
N .S N B S WA A grand partition
Ha_zv%@{h /d p[ %(2 )” function
1 0 —  (N)a eBota, 2rmkpT,, :
(N)g = 5 o InEq, pa=-73—= - density

_ h de Broglie thermal
V2rmkpT, ~ wave length




Carnot efficiency at the thermodynamic limait

E T B
10" oot
5 10> ~A | =
1]

T T (R T T

o' e
5 033 | & 0.67
< ~A TN ~ A
104
100 1 ' ”””'IZ' -...-...3. .-.-.-..4 1 ' "””'IZ' -.-.....3. .-.-.--.4
10 10 10 10 10 10 10 10
A A
Anomalous o g S? - ZT diverges
thermal transport Tk increasing the systems size

[R. Luo, G. B., G. Casati, J. Wang, PRL 121, 080602 (2018)]



Delta-energy filtering mechanism?

05 B””/\
= U —
> 1.004
& 10_ 1%

10
10*]

0.95 - | % _2. , 2 6I | |
0.0 0.5 1.0

x/L

A mechanism for achieving Carnot different from
delta-energy filtering is needed



Validity of linear response

at small P/ Py, .

1.0-
1 P
n(P)Smr(P)=nc (1_ZP—)
0.8 1 max
@) 0.6— ———————————
& .
0.4‘ ...............
o2 /7 T EEE
0.0 0.2
0.0 0.2 0.4 0.6 0.8 1.0

P/Pnax

The agreement with linear response improves with N
(VT decreases as the system size increases)



Non-interacting classical bound
(but quantum mechanics needed)

Jp:"/"L/ deur,(e)T (e) —W'R/ deur(e)T(€), uqn(€) = PBae Pae
0 0

™
|

— %/Oo dE [frL(E) — fr(E)|T(F) charge current
0

/ " 4B (B - po)[fu(B) - fa(B)r(E) heat current

fo (E) — e BalE—La)  Maxwell-Boltzmann distribution

0<7(F)<1 (in 1D)



ninc
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For P/Pmax<<17 n(P)SnmaX(P):nC (1_—BCV%PfaX>’
B, ~ 0.493
T, =11,Tr = 0.9
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P < P = A k% (AT)?, A, ~0.0373
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nmax / 77C

Overcoming the non-interacting bound

1.0+
_ B l P (7max)
Thmax = T)C (1 9 Pmax )
0.9 - b\’o\
-
N\,
G o \.\\
0841 ¢ -0 »_ o o
R \0
t p;g‘s Non-interasting %G ‘o
P bound »
= p=0.38
0.74 @ p=0]|by linear response] .
0.000 0.001 0.002

P(n_ )




Multiparticle collision dynamics (Kapral model) in 2D

Streaming step: free
propagation during a time t

Collision step: random rotations of the velocities of the
particles 1n cells of linear size a with respect to the center of
mass velocitv:

v; — VCM + R*e (?7} — VCM)

Momentum 1s conserved



Overcoming the (2D) non-interacting bound

00 02 04 06 08 10
P/Pmax

O

Mo 11

1.00+

0.88-

0.76 -

0.64 -

0.00




Results can be extended to cooling

COP 1.0-
77(7-) _ Jh,L
Pabs

- 0.8
=28
<
Iy
et

0.6

'/ 0.4

o’ 0.000

T 7 ‘ k2 T2

™) < s (7 ) mn™ (1 R h.L st) _ FBLL
M < e (Jn,L) =0’ | 1-C ,  (Jn,r)

o ¢ Tr—TL (J; 1) 5 e

C =~ 0.813



Applications for cold atoms?

Breakdown of the Wiedemann—Franz law in a unitary

Fermi gas

Dominik Husmann?, Martin Lebrat?, Samuel Hausler?, Jean-Philippe Brantut®, Laura Corman?®’, and Tilman Esslinger®

We report on coupled heat and particle transport measurements
through a quantum point contact (QPC) connecting two reservoirs

of resonantly interacting, finite temperature Fermi gases. After A

heating one of them, we observe a particle current flowing from
cold to hot. We monitor the temperature evolution of the reser-
voirs and find that the system evolves after an initial response
into a nonequilibrium steady state with finite temperature and
chemical potential differences across the QPC. In this state any
relaxation in the form of heat and particle currents vanishes. From
our measurements we extract the transport coefficients of the
QPC and deduce a Lorenz number violating the Wiedemann-Franz
law by one order of magnitude, a characteristic persisting even
for a wide contact. In contrast, the Seebeck coefficient takes a
value close to that expected for a noninteracting Fermi gas and
shows a smooth decrease as the atom density close to the QPC is
increased beyond the superfluid transition. Our work represents
a fermionic analog of the fountain effect observed with super-
fluid helium and poses challenges for microscopic modeling of the
finite temperature dynamics of the unitary Fermi gas.

Particles

Heat

PNAS | August 21,2018 | vol. 115 | no. 34 | 8563-8568




Power-efficiency trade-off
at the verge of phase transitions

For heat engines described as Markov processes:
P < Alnc —n)

[N. Shiraishi, K. Saito, H. Tasaki, PRL 117, 190601 (2016)]

For a working substance at a critical point:

(n—nc) ~ N2 — 0(witha > 0), P~N

[M. Campisi, R. Fazio, Nature Comm. 7, 11895 (2016); see also
Allahverdyan et al., PRL 111, 050601 (2013)]

Results compatible only with diverging amplitude A
when approaching the Carnot efficiency



Power-etficiency-fluctuations trade-off

For classical Markovian dynamics on a finite set of
states and overdamped Langevin dynamics, trade-off
between power, efficiency, and constancy for steady-
state engines:

n_ T ] Ap = lim((P(t) = P)*)t

ne —nAp 2 §=>c0
[P. Pietzonka, U. Seifert, PRL 120, 190602 (2018)]

P

Bound violated in quantum mechanics, e.g. for
resonant tunnelling transport (noninteracting system),
but not close to Carnot efficiency. The problem for
interacting systems 1s open.

[J. Liu. D. Segal, PRE 99, 062141 (2019)]



Carnot efficiency at finite power
with broken time-reversal symmetry?

TL,/.LL @ TR:MR

Jo=Lee(B)Fe+ Len(B)Fh £ _ Ayir (AV = Ape)

Jn = Lpe(B)F, + Lpn(B)F,  Fn= AT/T?

B applied magnetic field or any Ap = pr — R
parameter breaking time-reversibility _
such as the Coriolis force, etc. AT =Ty, —Tr

(we assume T, > Tr, pr < UR)



Constraints from thermodynamics

POSITIVITY OF THE ENTROPY PRODUCTION:

S =Fodo+ Fady 20 ) Lee20
Lypp >0

|
LoeLpp — 2 (Lo + Lie)* >0
ONSAGER-CASIMIR RELATIONS:

Lij(B) = ) ) G(B)=G(-B)
K(B) = K(-B)
in general, S(B) # S(—B)




Both maximum efficiency and
efficiency at maximum power depend on two parameters

Leh S (B )

YT I SCB)

Lethe G(B)S (B)S (—B) T

det L K(B)
nc Ty Vy+1-—1

Phax) = max
1 Bna) = 57 gy e =000 e

At B = 0 there is time-reversibility and:
asymmetry parameter r = 1
the efficiency only depends on y(z = 1) = ZT



:ﬂ hz) <y<0ifz<0

I - 0<y<h(z)if x>0

h(a;) — 4:17/(:1;—1)2

maximum efficiencies

achieved for y = h(x)

- | | l l
- B 9 5 10
X

v Nex” if x| <1,
N (Pmax) = 1¢ — . : Nmax =
1 nc if |x[>1.



~< R 1 The CA limit can be
Bl ™\ / | overcome within
o \ // 1 linear response
=t \ .
0.4 \ / |

When |x| is large the figure of merit y required to get
Carnot efficiency becomes small

Carnot efficiency could be obtained far from the tight
coupling condition
[G..B., K. Saito, G. Casati, PRL 106, 230602 (2011)]




Output power at maximum efficiency

_ 2 2
Tlmax |Leh - Lhel fTrh

4 Lee

P(ﬁmax) —

When time-reversibility is broken, within linear
response it is not forbidden from the second law to have
simultaneously Carnot efficiency and non-zero power.

Terms of higher order in the entropy production,
beyond linear response, will generally be non-zero.
However, 1rrespective how close we are to the
Carnot efficiency, we could find small enough
forces such that the linear theory holds.



Reversible part of the currents

L.:— L.
J{ev _ Z 1] Jt gj

j=e.h -
: L,J + le
J;rr = Z 5 fTrj
j=e.h

The reversible part of the currents does not contribute to
entropy production

y = fTre]e + Srhfh = J;rrffre + J,i;rffrh

Possibility of dissipationless transport?

[K.. Brandner, K. Saito, U. Seifert, PRL 110, 070603 (2013)]



How to obtain asymmetry
in the Seebeck coefficient?

For non-interacting systems, due to the symmetry properties
of the scattering matrix » S(B) = S5(—B)

This symmetry does not apply when electron-phonon and
electron-electron interactions are taken into account

Let us consider the case of partially coherent transport, with
iInelastic processes simulated by “conceptual probes”
mimicking inelastic scattering (Buttiker, 1988).

thermalize

2ZIPULIDY]

thermalize

Probe (P)




Non-interacting three-terminal model

Tp,up P probe reservoir
T, =T+ AT, Tp =T
Tr,pr * Tr,pr KL =M+ Ap, pp=p
Tp =T+ ATp
pp = p+ Ap

Charge and energy conservation:
> ek =0, Jur=0 (Jpr=Jup — (/) Jeyi)

Entropy production (linear response):

t "I = (Jor, Jnr, Jep, Jup)
FJ = Z” o (Dn AT App AT
el T2 eT ' T?




Three-terminal Onsager matrix

Equation connecting fluxes and thermodynamic forces:

J=LF

L i1s a 4 x 4 Onsager matrix
In block-matrix form:
(3)=(e o) (%)
Js Lgo Lpg F

Zero-particle and heat current condition through the probe terminal:

Jg = (J3,J1) =0 & Fg=-Lgs LpaFa



Two-terminal Onsager matrix for partially
coherent transport

Reduction to 2x2 Onsager matrix when the third terminal is
a probe terminal mimicking inelastic scattering

Ja — L/fa, L/ — Laa — LaﬁLﬁﬁ_lLﬁa.

J o1 Lo Fs
L’ is the two-terminal Onsager matrix

for partially coherent transport

The Seebeck coeflicient is not bounded to be symmetric in B
(for asymmetric structures)



First-principle exact calculation within the
Landauer-Bittiker approach

Bilinear Hamiltonian H = Hqg+ Hp + He

Tight binding N-site Hamiltonian

N
Hg = Z Hypicl

n,n’'=1

Reservoirs (ideal Fermi gases): Hr = ) _ k. chzqckq

Coupling (tunneling) Hamiltonian

HC = Z(tch};ch;k =+ tzqcch,:-rk)
kyq



Charge and heat current from the left terminal
n=-1| AESTRLENL(E)- TEk(E) ()

To= g [ dB(E-u) Y LBV (E)-TL(E) ()

k

fk(E) {exp[(E Mk)/kBTk] -1 1] ~1 Fermi function

Tkl transmission probability from terminal [ to terminal &

J3 — Jl(L —> P), J4 — JQ(L — P)



Onsager coefficients from linear response
expansion of the currents

Transmission probabilities:

Tpq = Tr[[p(E)G(E)T4(E)GT(E)]
Broadening functions T'x(E) = i[Yx(E) — X! (E)]
Self-energies D
Retarded system’s Green function

G(E)=[E—Hs - ) Si(E)™
k



[llustrative three-dot example

I'el .

Hg = Z EkCLCk + (tLRCLCLtBi(M3 + tRpCTPCRew/S + tpLCECpei(i)/3 -+ H.C.)

Asymmetric structure, €.g.. €L 7 €r



Asymmetric Seebeck coefficient

10 —

-10 —

[
(]

| I | I | I |
%23 022 021 02 0.19
o/2m

[K. Saito, G. B., G. Casati, T. Prosen, PRB 84, 201306(R) (2011)]
[see also D. Sanchez, L. Serra, PRB 84, 201307(R) (2011)]
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The Curzon-Ahlborn Ilimit
can be overcome (within
linear response)
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[V.. Balachandran, G. B., G. Casati, PRB 87,
165419 (2013);
se also M. Horvat, T. Prosen, G. B., G. Casati,
PRE 86, 052102 (2012)]



Saturation of bounds
from the unitarity of S-matrix

Bounds obtained for non-interacting 3-terminal transport
(K. Brandner, K. Saito, U. Seifert, PRL 110, 070603 (2013))

Tl max




Bounds for multi-terminal thermoelectricity

n=23,...,12 terminals

NMmax(Z) /Mo

Numerical evidence that
the power vanishes when
the Carnot efficiency 1s
approached

n*(z)/nc

[Brandner and Seifert, NJP 15, 105003 (2013); PRE 91,012121 (2015)]



Bounds with electron-phonon scattering

Efficiency bounded by the non-negativity of the entropy
production of the original three-terminal junction. However,
the efficiency at maximum power can be enhanced

[ Yamamoto, Entin-Wohlman, Aharony, Hatano; PRB 94, 121402(R) (2015)]



Onsager-Casimir relations

Onsager reciprocal relations reflect at the macroscopic level
the time-reversal symmetry of the microscopic dynamics,
invariant under the transformation:

T(rapa t) = (ra_pa _t) ‘ ij — ij

With an applied magnetic field one 1nstead obtains
Onsager-Casimir relations:

Te(r,p,t,B) = (r,—p,—t,—B) ‘ Lik(B) = Lii(—B)

but in principle one could _ _
violate the Onsager symmetry: Ljx(B) # Lg;(B)



Onsager relations and thermodynamic constraints
on heat-to-work conversion

For thermoelectricity:
[1(B) # TS(B) [that is, Len(B) # Lne(B)]

and 1n principle one could have the Carnot efficiency
at finite power:

2 2
_ C |Le —L el
P = 774 hIJee hel T




Onsager relations
with broken time-reversal symmetry

Onsager relations under an applied magnetic field
remain valid:

1) for noninteracting systems

2) 1f the magnetic field 1s constant
[Bonella, Ciccotti, Rondoni, EPL 108, 60004 (2014)]

What about for a generic, spatially dependent
magnetic field?



Symmetry without magnetic field inversion

H = Z[pz_g;lz QZV7”

1]

Analytical result for B = B(x) k

Landau gauge: A(x)j
Equations of motion

i = % invariant under:
y'i:%[Pﬁ’—in(M)]: M(;‘L’jy,szm,py,pz,t,B)

i pfl = (LL’, _yazv_pmapya_pza_t:B)
Zq — E |

pi = Fi + % pi — qiA(wi)] B(w:)

p; = Fy




Numerical results

1.95 - o] - o @] 1951 ol pn (®)] 2504 107~ ©)
B3 ca’“loj ) ”;M‘ &4 ST m‘;\; "izj TN
1.90 10 P 1.90 - e 239 # R ' +
& \ 10* { / o "’?‘ S w0 ‘q}/
" ] 10° 10 10° 1 10° 10° 107 | \10 10° 10 10
= 185 \ t /‘qL 1.85 { 2281 /
4 # 1
1.80 T~y 1.80 4 N7 2174
03 0.0 0.3 48 0.0 4.8 40 0.0 40
g g g
B(x) = gx generic 2D case:
B(x,y) = gsin[rz/(2L)]sin[ry/(2W)]

generic 3D case:

B = g(Bm,By,Bz),

— fyfm By — fzfa:

fz = sin[mxz/(2L)],
f>=sin|rz/(2H)]

Theoretical argument:
divide the system into small
volumes dV/,

Time-reversal trajectories without
reversing the field for dV,, — 0O

Bz — f:rf:ua
y — Sln[ﬂ-y/(QW)]*



No-go theorem for finite power at the Carnot efficiency on purely
thermodynamic grounds?

According to Nico Van Kampen Onsager derived his reciprocal
relations 1n a “stroke of genius”

Onsager reciprocal relations (or the fourth law of thermodynamics)
much more general than expected so far.



Quantum computation and information is a
rapidly developing interdisciplinary field. It
is not easy to understand its fundamental
concepts and central results without facing
numerous technical details. This book
provides the reader with a useful
guide. In particular, the initial
chapters offer a simple and self-
contained introduction; no previous
knowledge of quantum mechanics
or classical computation is required.

Various important aspects of quan-
tum computation and information
are covered in depth, starting from the foun-
dations (the basic concepts of computational
complexity, energy, entropy, and information,
quantum superposition and entanglement,
elementary quantum gates, the main quan-
tum algorithms, quantum teleportation, and

v

quantum cryptography) up to advanced
topics (like entanglement measures, quan-
tum discord, quantum noise, quantum
channels, quantum error correction, quan-
tum simulators, and tensor networks).

It can be used as a broad range
textbook for a course in quantum
information and computation,
both for upper-level undergraduate
students and for graduate
students. It contains a large
number of solved exercises, which
are an essential complement to the text, as
they will help the student to become
familiar with the subject. The book may also
be useful as general education for readers
who want to know the fundamental
principles of quantum information and
computation.

“Thorough introductions to classical computation and irreversibility, and a primer of quantum
theory, lead into the heart of this impressive and substantial book. All the topics — quantum
algorithms, quantum error correction, adiabatic quantum computing and decoherence are just
a few — are explained carefully and in detail. Particularly attractive are the connections between
the conceptual structures and mathematical formalisms, and the different experimental
protocols for bringing them to practice. A more wide-ranging, comprehensive, and definitive

text is hard to imagine.”
— Sir Michael Berry, University of Bristol, UK

“This second edition of the textbook is a timely and very comprehensive update in a rapidly
developing field, both in theory as well as in the experimental implementation of quantum
information processing. The book provides a solid introduction into the field, a deeper insight
in the formal description of quantum information as well as a well laid-out overview on several
platforms for quantum simulation and quantum computation. All in all, a well-written and
commendable textbook, which will prove very valuable both for the novices and the scholars in
the fields of quantum computation and information.”

— Rainer Blatt, Universitit Innsbruck and IQOQI Innsbruck, Austria

“The book by Benenti, Casati, Rossini and Strini is an excellent introduction to the fascinating
field of quantum information, of great benefit for scientists entering the field and a very useful
reference for people already working in it. The second edition of the book is considerably
extended with new chapters, as the one on many-body systems, and necessary updates, most
notably on the physical implementations.”

—— Rosario Fazio, The Abdus Salam International Centre  for Theoretical Physics, Trieste, Italy
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