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Motivations and purpose of these lectures

Qantum chaos has faced over the years problems of increasing complexity, from simple toy models

(like the kicked rotator) to single-particle physics (hydrogen atoms in strong magnetic and/or

microwave fields, cold atoms in laser fields, quantum transport in disordered lattices) and to

many-body interacting systems such as nuclei, complex atoms, quantum dots, quantum spin

glasses and, more recently, quantum computers

A quantum computer represents a complex system of many coupled qubits, which in general can

be viewed as a many-body interacting quantum system

Typical problems in the field of quantum chaos, such as the stability of quantum motion, deco-

herence and the quantum to classical transition, are also essential for any realistic implementation

of a quantum computer
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Outline

• Remarks on classical and quantum chaos

• Effects of imperfections in the quantum computer hardware

• Quantum noise and quantum trajectories

• Quantum simulation of dissipative chaotic systems (in optical lattices)

Approach: Numerical simulation of noisy many-qubit quantum computations (mainly for the

simulation of complex quantum dynamics) and random matrix theory approach

Results: time scales for reliable quantum computation under decoherence and imperfection effects,

suggestions to improve the stability of quantum computation, proposal for the simulation of

complex dissipative quantum dynamics in optical lattices
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Remarks on classical chaos

Classical chaos is characterized by exponential local instability: two nearby trajectories separate

exponentially, with rate given by the maximum Lyapunov exponent

λ = lim
|t|→∞

1

|t| ln
d(t)

d(0)

d length of the tangent vector

Chaotic orbits are unpredictable: in order to predict a new segment of a trajectory one needs

additional information proportional to the length of the segment and independent of the previous

length of the trajectory. The information associated with a segment of trajectory of length t is

equal, asymptotically, to

lim
|t|→∞

I(t)

|t| = h,

where h is the so called KS (Kolmogorov-Sinai) entropy which is positive when λ > 0
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Exponential instability =⇒ Continuous (frequency) Fourier spectrum of motion
The power spectrum is the Fourier transform of the autocorrelation function

R(τ) = lim
T→∞

1

T

Z T/2

−T/2

x(t)x(t + τ)dt

Continuous spectrum =⇒ Decay of correlations (mixing)

Mixing assures the statistical independence of different parts of a trajectory

Mixing =⇒ Statistical description of chaotic dynamics (diffusion, relaxation, ...)

Exponential instability is not necessary for a meaningful statistical description

Integrable systems =⇒ Nearby points separate only linearly
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Loss of memory in the Arnold cat map

T :
{

x̄ = x + y (mod 1),
ȳ = x + 2y (mod 1)

h = λ = ln

(
3 +

√
5

2

)
> 0

Stretching and folding of the cat in phase
space
Any amount of error rapidly effaces the
memory of the initial distribution
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Quantum chaos?

The distinction between regular and chaotic motion survives quantization, even though the

distinction criteria change

The alternative of exponential or power-law divergence of trajectories disappears in quantum

mechanics, Heisenberg’s uncertainty principle forbidding the notion of trajectories

Conversely, genuine quantum criteria for chaos like quantum dynamical localization or level spacing

statistics as in random matrix theory, have no classical meaning

The essential conditions for classical chaos are violated in quantum mechanics. Indeed the

energy and the frequency spectrum of any quantum motion, bounded in phase space, are always

DISCRETE. According to the existing theory of dynamical systems such motion corresponds to

the limiting case of regular motion

The ultimate origin of this fundamental quantum property is the discreteness of the phase space:

the uncertainty principle implies a finite size of an elementary phase space cell
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On the other hand the CORRESPONDENCE PRINCIPLE requires the transition from quantum

to classical mechanics for all phenomena, including dynamical chaos

Quanstion: How can the correspondence principle be reconciled with a discrete quantum energy

spectrum when the limit is to be chaotic and thus characterized by a frequency continuum?

The answer to that question must lie in the existence of h̄eff-dependent TIME SCALES and,

equivalently, energy scales. For quantum features to become manifest one must resolve discrete

energy levels (whose spacings vanish as h̄eff → 0), that is, sustain observation times which

diverge in the limit h̄eff → 0
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Time scales of quantum chaos in the kicked rotator model

Let us consider a rotator with angular momentum I and angle variable θ driven by a series of

periodic pulses (the kicks)

H(I, θ, τ) =
I2

2
+ k cos θ

+∞X
m=−∞

δ(τ −mT )

CLASSICAL MAP

8><>: I = I + k sin θ,

θ = θ + TI (0 ≤ θ < 2π)

After the rescaling I → p = IT :

8<: p = p + K sin θ,

θ = θ + p
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Classical dynamics depends only on the parameter K = kT

For K À 1 the classical motion is ergodic, mixing and exponentially unstable with Lyapunov

exponent λ ≈ ln(K/2), apart small stability islands

The rescaled action variable p = TI displays a random walk type of motion and exhibits normal

diffusion:

〈(∆p)
2〉 = 〈(p− 〈p〉)2〉 ≈ Dpt

t = τ/T time in units of map iterations, Dp ≈ K2/2 diffusion coefficient

QUANTUM MAP:

ψ = Ûψ = e
ik cos θ̂

e
−iT Î2/2

ψ

(Î = −i∂/∂θ, h̄ = 1)

Classical limit: k →∞, T → 0, K = kT = const (indeed [θ, p] = T [θ, I] = iT = ih̄eff)
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The Ehrenfest time scale

Ehrenfest theorem: a quantum packet follows a beam of classical orbits as long as the packet

remains narrow; during this time interval the quantum wave-packet motion is exponentially

unstable and random as the underlying classical trajectory

The initial size of the quantum packet is bounded from below by the elementary quantum phase

space cell of order h̄

Let us start from an initial minimum-uncertainty wave packet of size ∆θ0∆p0 = T∆θ0δI0 ∼
Th̄ = h̄eff , with ∆θ0 ∼ ∆p0 ∼

√
h̄eff (least-spreading wave packet)

∆θ grows exponentially due to classical exponential instability:

∆θ ∼ ∆θ0 exp(λt) ∼
p

h̄eff exp(λt)

λ maximum Lyapunov exponent of the system
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Complete spreading over the angle variable θ is obtained after a the so-called Ehrenfest time scale

[Berman and Zaslavsky, 1978]

tE ∼
1

λ
| ln h̄eff|

True dynamical chaos characterized by exponential instability is limited in quantum mechanics,

for Hamiltonian systems, to the logarithmically short (in h̄eff) Ehrenfest time scale

tE increases indefinitely as h̄eff → 0, in agreement with the correspondence principle

Cassical-like diffusion is possible, in the absence of exponential instability, also at times t > tE
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Quantum dynamical localization

The second time scale t?, at which the quantum evolution breaks away from the classical diffusion,

is related to the phenomenon of quantum dynamical localization

For t > t?, while the classical distribution goes on diffusing, the quantum distribution reaches a

steady state which decays exponentially over the momentum eigenbasis

WI ≡ |〈I|ψ〉|2 ≈ 1

`
exp

�
−2|I − I0|

`

�

I0 initial value of the momentum

` localization length, gives the width of the localized distribution
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Estimate t? and ` (Siberian argument)

Since the number of involved levels grows ∝ √
t and the discreteness of levels is resolved down

to an energy spacing ∝ 1/t, then the discreteness of spectrum eventually dominates

The localized distribution projects over ` eigenstates of the Floquet operator (one-period unitary

evolution operator)

The mean level spacing of “significant” quasienergy eigenstates is ∆E ≈ 2π/`

The Heisenberg principle tells us that the minimum time (the break time t?) required to the

dynamics to resolve this energy spacing is given by

t
? ≈ 1/∆E ≈ `

Diffusion up to time t? involves a number of levels given byq
〈(∆I)2〉 ≈

p
DIt? ≈ `
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DI ≈ k2/2 ∼ 1/h̄2
eff classical diffusion coefficient, measured in number of levels

Therefore t? ≈ ` ≈ DI

t
? ∼ 1

h̄2
eff

À tE

diverges as h̄eff → 0, in accordance with the correspondence principle
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Quantum dynamical localization has profound analogies with Anderson localiza-
tion of electronic transport in disordered materials

Differences: dynamical localization (i) takes place in angular-momentum space
instead of coordinate space and (ii) no disorder is introduced

Dynamical localization has been observed experimentally in the microwave ion-
ization of Rydberg atoms and is now actively studied in experiments with cold
atoms in laser fields
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Dynamical stability of quantum motion

Quantum evolution is very stable, in
contrast to the extreme sensitivity to
initial conditions and rapid loss of
memory of classical chaos
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Practical irreversibility of classical motion as chaos magnifies computer round-off errors

The time to amplify the perturbation and significantly modify the trajectories is

tε ≈
1

λ
| ln ε|

For round-off errors of order ε ∼ 10−14 and the kicked rotator model at K = 5, λ ≈ ln(K/2),

we have tε ∼ 35

In the quantum case almost exact reversion is observed in numerical simulations

Therefore, quantum dynamics, even though it is diffusive, lacks dynamical instability

The physical reason of this striking difference between quantum and classical motion is rooted in

the discreteness of the quantum spectrum

The reversibility of quantum motion in numerical simulations is due to the fact that computer

round-off errors act on a scale much smaller than the size of the Planck’s cell
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The classical motion (governed by the Liuoville equation) of some phase space density, explores

smaller and smaller scales exponentially fast. Correspondingly there is an exponential growth in

the number of the density’s Fourier harmonics that are excited. This process is limited in quantum

mechanics to the size of the Planck’s cell

The lack of exponential instability in quantum mechanics is relevant for the prospects of any

practical implementation of quantum computation, which has to face errors due to imperfections

and decoherence
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The quantum Loschmidt echo

A better understanding of the stability of quantum motion can be obtained if we examine the

fidelity of quantum motion, also known as the quantum Loschmidt echo

Fidelity (Loschmidt echo): Definition

Consider unitary quantum evolution

|ψ(t)〉 = U
t|ψ0〉

• U t = exp(−iHt/h̄) for continuous time dynamics

• U = Floquet map for discrete time dynamics

Introduce a small perturbation of the Hamiltonian

U
t
ε = exp(−i(H + εV )t/h̄)
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and consider the perturbed evolution of the same initial state

|ψε(t)〉 = U
t
ε |ψ0〉

Define fidelity as

f(t) = |〈ψε(t)|ψ(t)〉|2 = |〈ψ0|mε(t)|ψ0〉|2

Fidelity is the expectation value of the unitary echo operator

mε(t) = U
−t
ε U

t
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Motivations for the study of fidelity

• Quantum chaos in time domain: Stability of quantum time evolution under
perturbation of the Hamiltonian

• Fingerprints of Lyapunov exponents in quantum dynamics?

• Quantum echoes: Dynamical origin of macroscopic irreversibility

• Quantum computing: Stability of quantum algorithms and reliability of quantum
state manipulation

• Decoherence: Understanding decoherence with deterministic models of environ-
ment
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Fidelity decay in chaotic systems

Consider for instance the sawtooth map model with N levels on the torus −π ≤ p < π

and perturb the kicking strength: k → k′ = k + σ, corresponding to a classical perturbation

K = kT → K ′ = K + ε, with ε ≡ σT

The transition matrix elements Vjk = 〈uj|V |uk〉 of the perturbation operator V between the

eigenstates {|uj〉} of the Floquet operator U are of the order of

Vtyp ∼
σ√
N

This estimate is obtained assuming that the quasienergy eigenstates |uj〉 are ergodic: if we

expand the eigenfunction over, for instance, the momentum basis, |uj〉 =
P

I cI|I〉, then

the coefficients cI have (pseudo-)random phases and, to assure the normalization of the wave

function, amplitudes ∼ 1/
√

N
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Vjk =
X
II′

cIc
?
I′〈I ′|V |I〉

The matrix elements 〈I ′|V |I〉 have a value ∝ σ significantly different from zero for |I−I ′| < b

and can be neglected, as a first approximation, outside this band

Vjk is given by the sum of O(bN) terms of amplitude σ/N and random signs. This leads to

the estimate of the typical value Vtyp ∼ σ/
√

N

The typical coupling strength Vtyp has to be compared with the typical energy separation between

the unperturbed quasienergies,

∆E ∼ 1

N
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Regimes for the fidelity decay

1) Perturbative regime σ < σp ≈ 1/
√

N (Vtyp < ∆E)
The fidelity decay can be calculated in perturbation theory:

f(t) ∼ exp(−V 2
typt

2)

2) Fermi golden rule regime σp < σ < 1

f(t) ∼ exp(−Γt)

rate Γ ∼ V 2/∆E ∼ σ2 given by the Fermi golden rule

3) Semiclassical regime σ > σc ∼ 1
The fidelity decay is again exponential, but with a perturbation independent rate
Γ = λ, where λ is the Lyapunov exponent of classical chaotic dynamics
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Fermi golden rule to Lyapunov crossover
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Classical fidelity

Evolve an area A forward (unperturbed) for t steps and backward (perturbed) for
other t steps and get A’. The overlap of A and A’ gives the fidelity fc(t). In
practice, follow many trajectories and count how many return back inside A.
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−π L

L

Aν
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Formal definition of classical fidelity:

fc(t) =
∫

dqdpρε(q, p, t)ρ(q, p, t)√∫
dqdpρ2

ε(q, p, t)
√∫

dqdpρ2(q, p, t)

Note that fc is the classical limit of the quantum fidelity for mixed states:

f(t) =
Tr[ρ0(t)ρε(t)]

Tr(ρ2
0)
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Lyapunov decay of classical fidelity

The decay rate is PERTURBATION
INDEPENDENT and sets in after a
transient time

tε ≈ 1
λ

ln
(ν

ε

)

required to amplify the perturbation
up to the scale ν of the initial distri-
bution
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Stability of numerical simulations

Round-off errors are always so small that σ ¿ 1

If we model round-off errors as memoryless errors of size ε, then the quantum
fidelity decays as f(t) ∼ exp(−σ2t). For σ ∼ 10−15, then simulation is stable up
to an enormously long time scale

t
(q)
f ∼ 1

σ2

Classical fidelity decays after a time

t
(c)
f ∼ 1

λ
+ tε ∼ 1

λ

[
1 + ln

(ν

ε

)]
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Due to exponential instability, in this case the scaling is only logarithmic in ε.
Thus the classical motion is in practice irreversible after the logarithmically short

time scale t
(c)
f

Note that by itself an exponential decay of the fidelity does not imply exponential
instability: This is not the case in the Fermi golden rule regime
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Chaos and decoherence

According to Feynman, the double-slit experiment ”... is impossible absolutely
impossible, to explain in any classical way, and has in it the heart of quantum
mechanics. In reality, it contains the only mystery.”

s

a

l Λ

absorber

screen

(Casati and Prosen, 2004)
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“Decoherence” due to tracing over time instead that over environmental freedoms
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Limits to quantum computation due to chaos and decoherence

Accuracy of quantum computation measured by fidelity: f(t) = 〈ψ(t)|ρε(t)|ψ(t)〉
Quantum algorithm: |ψf〉 = U |ψ(0)〉, U = UNg · . . . · U1| {z }

elementary gatesErrors: Uj → e−iεV (j)Uj

(i) Memoryless unitary errors:

V random and different at each j,

e.g.: random phase fluctuations: δφ ∈ [−ε, ε] in phase-shift gates

(ii) Static imperfections in the quantum computer itself:

V (random but) constant at each j,

e.g.:

V = Hsτg =

n−1X
j=0

δj σ
(z)
j + 2

n−2X
j=0

Jj σ
(x)
j σ

(x)
j+1 , Jj, δj ∈ [−ε, ε]

(iii) Non-unitary errors in quantum computation:

e−iεV is non-unitary (V 6= V †, density matrix and quantum trajectories approach)
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Effects of imperfections in the quantum computer hardware

• Objectives: determine time scales for reliable quantum computation in the
presence of quantum computer hardware imperfections, device strategies to
improve the stability of quantum computation

• Approaches: numerical simulations and random matrix theory

• Main test bed: quantum algorithms simulating complex dynamics

• Main results: simulated quantum protocols with more than 25 qubits, found
time scales for reliable quantum computation under realistic imperfection models,
suggested strategies to reduce the impact of static imperfections
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A model of quantum computer hardware

Even if the quantum computer is (ideally) decoupled from the environment, internal imperfections

can disturb quantum computation

Hs =

nX
i=1

Γiσ
z
i +

X
〈i<j〉

Jijσ
x
i σ

x
j

(Georgeot, Shepelyansky, 2000)

Γi = ∆0 + δi

δi ∈
�−δ

2,
δ
2

�
energy fluctuations

Jij ∈ [−J, J] residual short-range interaction

J ij  

The non-interacting eigenstates (J = 0) are the quantum register states used for computation

Hs quantum computer hardware

Hs → H(τ) = Hs + Hg(τ) = Hs +
P

k δ(τ − kτg)hk software (gate operations added)
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A testing ground: the quantum sawtooth map model

Kicked Hamiltonian H(I, θ, τ) = I2

2 − k
2(θ − π)2

∑+∞
m=−∞ δ(τ −mT )

CLASSICAL SAWTOOTH MAP





I = I + k(θ − π),

θ = θ + TI (0 ≤ θ < 2π)

After the rescaling I → p = IT :





p = p + K(θ − π),

θ = θ + p

Classical dynamics depens only on K = kT
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* −4 < K < 0 stable motion
* K < −4 and K > 0 chaotic dynamics

KAM theorem does not apply, for any K 6= 0 the motion is not bounded by
invariant KAM tori:

* K > 0 diffusive motion, < (∆p)2 >≈ D(K)t:
(i) K > 1 random phase approximation, D(K) ∝ K2

(ii) 0 < K < 1 cantori diffusion, D(K) ∝ K5/2

* −4 < K < 0 anomalous diffusion, < (∆p)2 >≈ tα (α = 0.57 when K = −0.1)

* K = −1,−2,−3 integrable regime

41



QUANTUM SAWTOOTH MAP:

ψ = Ûψ = eik(θ̂−π)2/2e−iT Î2/2ψ, (Î = −i∂/∂θ)

Classical limit: k →∞, T → 0, K = kT = const ([θ, p] = T [θ, I] = iT = ih̄eff)

Quantum localization effects: dynamical localization and cantori localization

One-period unitary evolution operator Û = ÛkÛT :
* Ûk = exp(ik(θ̂ − π)2/2) (kick)
diagonal in the θ- representation

* ÛT = exp(−iT Î2/2) (free rotation)
diagonal in the I- representation

On a classical computer, the time evolution is simulated via forward/backward
Fast Fourier Transforms, in O(N log N) operations (N number of levels)
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Quantum algorithm for the sawtooth map

(i) Free rotation |ψ〉 =
PN−1

I=0 aI|I〉 → |ψ〉 = ÛT |ψ〉 =
P

I aI exp(−iTI2/2)|I〉
I =

Pn−1
j=0 αj2

j (binary code, αj = 0, 1, n = log2 N number of qubits)

exp(−iTI2/2) =
Q

j1,j2
exp(−iTαj1

αj2
2j1+j2−1)

This step can be performed in n2 controlled-phase shift gates:

8>><>>:
|00〉 → |00〉
|01〉 → |01〉
|10〉 → |10〉
|11〉 → exp(−iT2j1+j2−1)|11〉

(ii) Quantum Fourier Transform

QFT can be performed in n Hadamard gates and n(n− 1)/2 controlled phase-shift gates

(iii) Kick This step is similar to (i) since now |ψ〉 is given in the θ representation, where

Ûk = exp(ik(θ̂ − π)2/2) is diagonal and for the sawtooth map analogous to ÛT .

(iv) Inverse QFT → back to the momentum basis
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Advantages of this quantum algorithm

• The simulation of time evolution is exponentially faster than classical compu-
tation: it requires ng = O(n2 = (log2 N)2) quantum gates per map iteration instead of

O(N log2 N) elementary operations

• Optimum use of qubits: no extra work space qubits

• Complex dynamics can be simulated with less than 10 qubits (less than 40 qubits

would be sufficient to make simulations inaccesible to present-day supercomputers)

44



We can reach exponentially fast with the number of qubits two distinct limits:

• Classical limit:

T =
2πL

N
=

2πL

2n
, K = const

The number of levels inside the interval −πL ≤ p < πL grows exponentially

The effective Planck constant h̄eff = T ∼ 1/N = 1/2n → 0 when N →∞

• Thermodynamic limit:

k, K constant, L =
TN

2π
=

T2n

2π

The thermodynamic limit corresponds to the system size (number of cells) L →∞
The effective Planck constant is fixed
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Study of static imperfections

Numerical study of the effect of static imperfections for a
many-body/qubit quantum computer simulating the quantum algorithm for the
sawtooth map

We assume that:
1) The quantum computer is decoupled from the environment
2) Short-range, instantaneous and perfect one- and two-qubit gates separated by
a time interval τg

3) The hardware Hamiltonian contains static imperfections, giving unwanted
phase rotations and qubit couplings

Hs → H(τ) = Hs + Hg(τ) = Hs +
∑

k

δ(τ − kτg)hk
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Quantum versus classical errors

• Quantum errors are “nonlocal” in phase space: they can induce direct transfer of probability on

a large distance in phase space: injection of quantum probabilities inside integrable islands

• Classical round-off errors: slow diffusive spreading inside integrable islands
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Static imperfections vs. noisy gates
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The exponential to Gaussian crossover takes

place at the Heisenberg time tH ∼ N , given

by the inverse mean level spacing: Before tH the

system does not resolve the discreteness of the

spectrum. Therefore, the density of states can

be treated as a continuous and the Fermi golden

rule can be applied.
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“Noisy gates”: modeled by

H =
X

i

(∆0 + δi(t))σ
z
i +

X
<i,j>

Jij(t)σ
x
i σ

x
j

with δi and Jij fluctuating without memory from gate to gate

In the case of noisy gates the fidelity decay is exponential. This corresponds to the Fermi

golden rule regime, where at each gate operation a probability of order ε2 is transferred from the

ideal state to other states. Since there are no correlations between consecutive noisy gates, the

population of the ideal noiseless state decays exponentially. We can write

f(t) ≈ exp(−Cε
2
Ng)

where Ng = ngt is the total nomber of gates required to evolve t steps of the sawtooth map
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Fidelity time scale
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tf obtained from the condition f(tf) = 0.9
The static imperfections give shorter time scales tf and therefore can be considered
more dangerous for quantum computation
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Random matrix theory approach

Assuming that the Floquet operator U can be modeled by a random matrix one
obtains [Frahm et al., EPJD 29, 139 (2004)]

− ln f(t) ≈ t

tc
+

t2

tctH

tc ≈ 1/(ε2nn2
g) characterizes the effective strength of the perturbation

tH = N = 2n Heisenberg time

This relation is valid as long as ε and t are sufficiently small so that 1− F ¿ 1
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Perturbative regime for ε < εc ≈ 1/(
√

n2nng), that is, for tc > tH, the fidelity decay is

dominated by the quadratic term in the above expression: The decay essentially takes place after

the Heisenberg time and is Gaussian, f(t) ≈ exp(−t2/tctH)

Fidelity time scale tf ∼
√

tctH ≈
√

2n

ε
√

nng

Number of gates inside this time (Ng)f = tfng ∼
√

2n

ε
√

n

Quantum chaos regime for ε > εc ≈ 1/(
√

n2nng), that is, for tc < tH, the fidelity de-

cay is dominated by the linear term in the above expression: The decay is exponential,

f(t) ≈ exp(−t/tc), and occurs before the Heisenberg time

Fidelity time scale tf ∼ tc ≈ 1

ε2nn2
g

Number of gates inside this time (Ng)f = tfng ∼ 1
ε2nng

The threshold εc is the chaos border above which static imperfections mix the Floquet eigenstates
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How to reduce the impact of static imperfections?

Since random imperfections changing from gate to gate always lead to an
exponential decay of the fidelity, it is tempting to try to randomize the static
imperfections to slow down the fidelity decay from Gaussian to exponential
This idea can be formalized if one observes that the fidelity can be expressed in
terms of a correlation function of the perturbation [Prosen and Žnidarič, J. Phis.
A 35, 1455 (2002)]

U = U(T )U(T − 1) · · ·U(1) sequence of ideal quantum gates
Uε = e−iεV (T )U(T )e−iεV (T−1)U(T − 1) · · · e−iεV (1)U(1) perturbed sequence
V (t) Hermitian operator
ε perturbation strength
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Fidelity of this quantum algorithm:

f(T ) =

���� 1NTr[Uδ(T, 0)U(T, 0)]

����2
the trace average the result over a complete set of initial states (for instance the quantum register

states)

U(t, t′) ≡ U(t)U(t− 1) · · ·U(t′ + 1) evolution operator from t′ to t > t′

Uδ(t, t′) is defined in the same way for the perturbed evolution

After defining the Heisenberg evolution of the perturbation as V (t, t′) = U†(t, t′)V (t)U(t, t′),
we obtain

f(T ) =

���� 1NTr
�

e
iεV (1,0)

e
iεV (2,0) · · · eiεV (T,0)

�����2
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As we are interested in the case in which the fidelity is close to unity, we can expand it up to the

second order in ε:

f(t) ≈ 1− ε
2

TX
t,t′=1

C(t, t
′
), C(t, t

′
) =

1

N
Tr[V (t

′
, 0)V (t, 0)]

C(t, t′) is a two-point time correlation of the perturbation

A quantum algorithm is therefore more stable when the correlation time of the perturbation

is smaller. This can be done by devising a “less regular” sequence of gates that realize the

transformation U required by the algorithm [Prosen and Znidarič, J. Phis. A 34, L681 (2001)]

For instance, using the Pauli operators one can change the computational basis repeatedly and

randomly during a quantum computation [Kern et al., EPJD 32, 153 (2005)]
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Stability of local and nonlocal characteristics

Let us study the stability of physical quantities computed by a quantum algorithm
simulating a dynamical system
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• diffusion coefficient DI(ε), obtained from the relation

〈(∆I)2〉 ≈ DI(ε)t

This is an important characteristic related to transport properties of the system

• inverse participation ratio

ξ =
1∑

I W 2
I

This quantity determines the number of basis states significantly populated by
the wave function and gives an estimate of the localization length of the system

Differently from the diffusion coefficient quantity, ξ is local in the localized regime,
i.e. it is insensitive to the behavior of exponentially small tails
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Stability of local quantities, like the inverse participation ratio vs. exponential
sensitivity of non-local characteristics, like the diffusion coefficient

6 8 10 12 14 16 18 20
n

−8
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−3

−2

ε th

ξsat(εξ)=N/4 

ξsat(εξ,2)=2ξsat(0)

D(εD)=2D(0)

εξ ∝ n−5/2 algebraic drop

εD ∝ n−2N−1 exponential drop
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Quantum noise

• Objectives: simulate noisy quantum protocols and determine time scales for
reliable quantum computation in a noisy environment

• Approach: numerical simulations using quantum trajectories

• Main test bed: quantum algorithms simulating complex dynamics

• Main results: simulated quantum protocols with up to 24 qubits, found time
scales for reliable quantum computation under realistic noise models
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Quantum trajectories approach
As a consequence of the unwanted environmental coupling, a quantum processor becomes, in

general, entangled with its environment, and therefore its state is mixed and described by a

density matrix. Its evolution is ruled, under the assumption that the environment is Markovian,

by a master equation. Solving this equation for a state of several qubits is a prohibitive task in

terms of memory cost

Quantum Trajectories allow us to store only a stochastically evolving state vector, instead of a

density matrix

This has an enormous advantage in memory requirements: if the Hilbert space has size N , we

store only a state vector of size N instead of a density matrix of size N ×N

By averaging over many runs we get the same probabilities (within statistical errors) as the ones

obtained by solving the density matrix directly

The theory of quantum trajectories is of widespread use in quantum optics to investigate physical

phenomena such as spontaneous emission, resonance fluorescence and Doppler cooling
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Quantum trajectories in the Markov approximation

If a system interacts with the environment, its state is described by a density operator ρ. Under

the Markov assumption, the dynamics of the system is described by a (Lindblad) master equation:

ρ̇ = − i

h̄
[Hs, ρ]− 1

2

X
k

{L†kLk, ρ}+
X

k

LkρL
†
k,

Hs is the system’s Hamiltonian, { , } denotes the anticommutator and Lk are the Lindblad

operators, with k ∈ [1, . . . , M ] (the number M depending on the particular model of interaction

with the environment)

• The first two terms of the above equation can be regarded as the evolution performed by an

effective non-hermitian Hamiltonian, Heff = Hs + iK, with K = −h̄/2
P

k L†kLk:

− i

h̄
[Hs, ρ]− 1

2

X
k

{L†kLk, ρ} = − i

h̄
[Heffρ− ρH

†
eff].

• The last term is the one responsible for the so called quantum jumps
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If the initial density matrix describes a pure state (ρ(t0) = |φ(t0)〉〈φ(t0)|), then, after an

infinitesimal time dt, it evolves into the statistical mixture

ρ(t0 + dt) = ρ(t0)− i
h̄[Heffρ(t0)− ρ(t0)H

†
eff]dt +

P
k Lkρ(t0)L

†
kdt

≈ (I − i
h̄Heffdt)ρ(t0)(I + i

h̄H†
effdt) +

P
k Lkρ(t0)L

†
kdt

= (1−Pk dpk) |φ0〉〈φ0| +
P

k dpk|φk〉〈φk|,

where the probabilities dpk = dt〈φ(t0)|L†kLk|φ(t0)〉, and the (normalized) new states are

defined by

|φ0〉 =
(I − iHeffdt/h̄)|φ(t0)〉p

1−Pk dpk

, |φk〉 =
Lk|φ(t0)〉
||Lk|φ(t0)〉||

.

Therefore with probability dpk a jump occurs and the system is prepared in the state |φk〉. With

probability 1 −Pk dpk there are no jumps and the system evolves according to the effective

Hamiltonian Heff . (normalization is included because the evolution is non-hermitian)
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Numerical method (Monte Carlo wave function approach)

• Start the time evolution from a pure state |φ(t0)〉

• At intervals dt much smaller than the time scales relevant for the evolution of the system,

choose a random number ε from a uniform distribution in the unit interval [0, 1]

• 1) If ε ≤ dp, where dp =
P

k dpk, the state of the system jumps to one of the states |φk〉
(to |φ1〉 if 0 ≤ ε ≤ dp1, to |φ2〉 if dp1 < ε ≤ dp1 + dp2, and so on)

2) if ε > dp the evolution with the non-hermitian Hamiltonian Heff takes place and we end up

in the state |φ0〉

• Repeat this process as many times as nsteps = ∆t/dt, where ∆t is the total evolution time

This procedure describes a stochastically evolving wave vector, and we say that a single evolution

is a quantum trajectory
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• Average over different runs to recover, up to statistical errors, the probabilities obtained using

the density operator. Given an operator A, we can write the mean value 〈A〉t = Tr[Aρ(t)] as

the average over N trajectories:

〈A〉t = lim
N→∞

1

N
NX

i=1

〈φi(t)|A|φi(t)〉

There is also an advantage in computation time with respect to density matrix direct calculations:

it is indeed generally found that N ≈ 100 − 500 trajectories are needed in order to obtain a

satisfactory statisticalconvergence, so that there is an advantage in computer time provided that

N > N
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Quantum trajectories and stochastic Schrödinger equation

A quantum trajectory represents a single member of an ensemble whose density operator satisfies

the corresponding master equation. This picture can be formalized by means of the nonlinear

stochastic Schrödinger equation

|dφ〉 = −iH|φ〉dt− 1

2

X
k

(L
†
kLk − 〈φ|L†kLk|φ〉)|φ〉dt

+
X

k

0B@ Lkq
〈φ|L†kLk|φ〉

− I

1CA |φ〉 dNk.

The stochasticity is due to the measurement results: we think that the environment is actually

measured (as it is the case in indirect measurement models) or simpler, that the contact of the

system with the environment produces an effect similar to a continuous (weak) measurement
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The nonlinearity appears due to the renormalization of the state vector after each measurement

process

The stochastic differential variables dNk are statistically independent and represent measurement

outcomes. Their ensemble mean is given by M [dNk] = 〈φ|L†kLk|φ〉dt. The probability that

the variable dNk is equal to 1 during a given time step dt is 〈φ|L†kLk|φ〉dt = dpk. Therefore,

most of the time the variables dNk are 0 and as a consequence the system evolves continuously

by means of the non Hermitian effective Hamiltonian Heff . However, when a variable dNk is

equal to 1, a quantum jump occurs

Differently from the master equation for the density operator, the stochastic Schrödinger equation

represents the evolution of an individual quantum system, as exemplified by a single run of a

laboratory experiment
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Quantum trajectories and the Kraus formalism

To see the connection between the quantum jump picture and the Kraus operators
formalism, let us write the solution to the master equation as a completely positive
map:

ρ(t0 + dt) = S(t0; t0 + dt)ρ(t0) =
M∑

k=0

Mk(dt)ρ(t)M†
k(dt),

M0 = I − iHeffdt/h̄, Mk = Lk

√
dt, (k > 0)

The Kraus operators Mk satisfy the condition
∑M

k=0 M†
kMk = I to first order in

dt

The action of the superoperator S in can be interpreted as ρ being randomly
replaced by MkρM†

k/Tr(MkρM†
k), with probability Tr(MkρM†

k)
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The set {Mk} defines a Positive Operator-Valued Measurement (POVM) with

POVM elements Ek = M†
kMk, that satisfy

∑M
k=0 Ek = I.

The outlined process is equivalent to performing a continuous (weak) measurement
on the system, that can be seen as an indirect measurement if the environment
is actually measured
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An example from quantum optics: spontaneous emission

Let us consider the simplest, zero temperature instance of the quantum optics master equation

ρ̇ = − i

h̄
[H, ρ]− γ

2
(σ−σ+ρ + ρσ−σ+) + γσ+ρσ−,

where the Hamiltonian H = 1
2h̄ω0σz describes the free evolution of a two-level atom, γ is the

atom-field coupling constant and σ± = 1
2(σx ± σy)

In this case there is a single Lindblad operator L1 =
√

γσ+ and a jump is a transition from the

excited state (|1〉) to the ground state (|0〉) of the atom

Starting from an initial pure state |φ(t0)〉 = α|0〉 + β|1〉 and evolving it for an infinitesimal

time dt, the probability of a jump in a time dt is given by

dp = 〈φ(t0)|L†1L1|φ(t0)〉dt = γ〈φ(t0)|σ−σ+|φ(t0)〉dt = γpe(t0)dt,
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where pe(t0) = |β|2 is the population of the excited state |1〉 at time t0

If a jump occurs, the new state of the atom is

|φ1〉 =
L1|φ(t0)〉
||L1|φ(t0)〉||

=

√
γ σ+(α|0〉+ β|1〉)

√
dt√

dp
=

β

|β||0〉.

In this case, the transition |1〉 → |0〉 takes place and the emitted photon is detected. As a

consequence, the atomic state vector collapses onto the ground state |0〉

If instead there are no jumps, the system’s evolution is ruled by the non-Hermitian effective

Hamiltonian Heff = H − ih̄
2L†1L1 = H − ih̄

2γσ−σ+, so that the state of the atom at time

t0 + dt is

|φ0〉 =

�
I − i

h̄Heffdt
� |φ(t0)〉√

1− dp
=

�
1− i

ω0
2 dt
�

α|0〉+
�
1 + i

ω0
2 dt− γ

2

�
β|1〉p

1− γ|β|2dt
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The normalization factor 1√
1−dp

is due to the fact that, if no counts are registered by the

photodetector, then we consider more probable that the system is unexcited

To see this, let us consider the evolution without jumps in a finite time interval, from t0 to t0 + t.

We obtain

|φ0(t0 + t)〉 =
α exp

�−i
ω0
2 (t− t0)

� |0〉+ β exp
��

i
ω0
2 − γ

2

�
(t− t0)

� |1〉p
|α|2 + |β|2 exp[−γ(t− t0)]

Note that as t → +∞ the state |φ0(t)〉 → |0〉 (up to an overall phase factor). That is, if after

a long time we never see a count, we conclude that we have been in the ground state |0〉 from

the beginning
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Generalized many-qubit noise channels

In the single-qubit case the dissipative environment can be conveniently modeled by means of the

amplitude damping channel, defined by the following Kraus operators:

M0 =

�
1 0

0
√

1− p

�
, M1 =

�
0

√
p

0 0

�
The operator M1 is responsible for the jumps |1〉 → |0〉, the jump probability being p

Many different generalizations to the many-qubit case are possible. For instance:

1) Collective interaction: a single damping probability describes the action of the environment,

irrespective of the internal many-body state of the system

Example: start from the four-qubit pure state ρ(t0) = |1011〉〈1011|; after a time dt we obtain
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the statistical mixture

ρ(t0+dt) =

�
1− Γdt

h̄

�
|1011〉〈1011|+Γdt

3h̄
(|0011〉〈0011|+|1001〉〈1001|+|1010〉〈1010|)

2) Single-qubit interactions: each qubit has its own interaction with the environment, indepen-

dently of the other qubits

Mµ = I ⊗ · · · ⊗ I ⊗M1 ⊗ I ⊗ · · · ⊗ I, (µ = 1, ..., n)

In the previous example,

ρ(t0+dt) =

�
1− 3Γdt

h̄

�
|1011〉〈1011|+Γdt

h̄
(|0011〉〈0011|+|1001〉〈1001|+|1010〉〈1010|)
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Teleportation in a noisy environment

We assume that the delivery of one of the qubits of the EPR pair required in the teleportation

protocol is done by means of SWAP gates along a noisy chain of qubits

012345678

System

Bob Alice

Environment

• Assume that the initial state of the chain is given byX
in−1,...,i2

cin−1,...,i2
|in−1 . . . i2〉 ⊗

1√
2
(|00〉+ |11〉),
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where ik = 0, 1 denotes the down or up state of qubit k

• In order to deliver one of the qubits of the EPR pair to Bob, we implement a protocol

consisting of n− 2 SWAP gates, each one exchanging the states of a pair of qubits:X
in−1,...,i2

cin−1,...,i2√
2

(|in−1 . . . i200〉+ |in−1 . . . i211〉)

→
X

in−1,...,i2

cin−1,...,i2√
2

(|in−1 . . . 0i20〉+ |in−1 . . . 1i21〉) →

... →
X

in−1,...,i2

cin−1,...,i2√
2

(|0in−1 . . . i20〉+ |1in−1 . . . i21〉).

• To model the transmission of the qubit through a chaotic quantum chain we take random

coefficients cin−1,...,i2
, that is they have amplitudes of the order of 1/

√
2n−2 (to assure wave

function normalization) and random phases
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Numerical results with up to 24 qubits

We have computed the fidelity f̄ = f − f∞ of teleportation in the presence of a dissipative

environment, as a function of the dimensionless damping rate γ and for up to n = 24 qubits
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Fidelity time scale for quantum computation
in a noisy environment

To be concrete, let us consider the quantum baker’s map, a prototypical map
for theoretical studies of quantum chaos, which can be simulated efficiently on a
quantum computer [Schack, PRA 57, 1634 (1998)] and has already been implemented
on a 3-qubit NMR-based quantum processor [Weinstein, Lloyd, Emerson, Cory, PRL 89,

157902 (2002)]

The classical baker’s transformation maps the unit square 0 ≤ q, p < 1 onto itself
according to

(q, p) → (q′, p′) =





(2q, 1
2p), if 0 ≤ q ≤ 1

2,

(2q − 1, 1
2p + 1

2), if 1
2 < q < 1.
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This corresponds to compressing the unit square in the p direction and stretching
it in the q direction, then cutting it along the p direction, and finally stacking one
part on top of the other (similarly to the way a baker kneads dough).

�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����

�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����

���������
���������
���������
���������
���������
���������
���������

���������
���������
���������
���������
���������
���������
���������

�����������
�����������
�����������
�����������
�����������
�����������
�����������

���������
���������
���������
���������
���������
���������
���������

q’q

p p’

The baker’s map is a paradigmatic model of classical chaos. It exhibits sensitive
dependence on initial conditions, which is the distinctive feature of classical
chaos: any small error in determining the initial conditions amplifies exponentially
in time. In other words, two nearby trajectories separate exponentially, with a
rate given by the maximum Lyapunov exponent λ = ln 2
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The baker’s map can be quantized (following Balazs, Voros and Saraceno):
we introduce the position (q) and momentum (p) operators, and denote the
eigenstates of these operators by |qj〉 and |pk〉, respectively. The corresponding
eigenvalues are given by qj = j/N and pk = k/N , with j, k = 0, ..., N − 1, where
N is the dimension of the Hilbert space. Note that, to fit N levels onto the unit
square, we must set 2πh̄ = 1/N .

It can be shown that the quantized baker’s map can be defined in the position
basis by the transformation

|ψ〉 → |ψ′〉 = B |ψ〉 = F−1
n

(
Fn−1 0

0 Fn−1

)
|ψ〉,

where F is the discrete Fourier transform and n is the number of qubits (N = 2n).
Therefore, the quantum baker’s map can be implemented efficiently on a quantum
computer [Schack, PRA 57, 1634 (1998); Brun and Schack, PRA 59, 2649 (1999)]
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The environment is modeled as a phase shift channel for each qubit, corresponding
to the Kraus operators

M0 =
√

1− p I, M1 =
√

p σz

We perform t steps of the noisy evolution of the baker’s map considering a
random initial state and measure the fidelity

f(t) = 〈ψexact(t)|ρnoise(t)|ψexact(t)〉
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Theoretical expectations:

f(t) = exp (−nγNg) = exp(−2γn3t),

t number of map steps
γ dimensionless decay rate
Ng total number of quantum gates

The number of gates that can
be reliably implemented without
quantum error correction drops only
polynomially with the number of
qubits: (Ng)f ∝ 1/n

2 3 5 10 20
n

100

101

102

103

t f

Numerical data, from f(tf)=0.9

Analytical formula, f(tf)=C/n3
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The theoretical formula for fidelity decay assumes that the decay of correlations
induced by chaotic dynamics takes place in a time scale shorter than the time
scale for fidelity decay

The law (Ng)f ∝ 1/n should remain valid also for other environment models that
allow only one qubit at a time to perform a transition, like the simple amplitude
damping channel

Furthermore, we note that this time scale for reliable quantum computation is
expected to be valid, beyond the baker’s map model, for any quantum algorithm
simulating complex dynamics, such as an evolution in the regime of quantum
chaos [see also J.W. Lee and D.L. Shepelyansky, PRE 71, 056202 (2005) about
dissipative decoherence in the quantum sawtooth algorithm]
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Final remarks

Decoherence and imperfections appear to be the ultimate obstacle to the practical
realization of a large-scale quantum computer

Numerical simulations including realistic noise parameters for specific experimental
implementations can be done following the approaches outlined in these lectures.
Such simulations promise to become a valuable tool for quantum hardware design
and to determine optimal regimes for the operability of quantum computers

We can expect that a deeper understanding of quantum chaos in many-body
quantum computers will suggest strategies suitable for a better working of
quantum processors
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Quantum Simulation of Dissipative Chaotic Systems:
Quantum Ratchets and Ehrenfest Explosion

Quantum simulation is a special instance of quantum computation

In particular, optical lattices allowed the observation of the superfluid to Mott
insulator and could be used for the study of a wide range of phenomena, from
strongly correlated condensed matter physics to spin glasses

We investigate the possibilities opened by optical lattices for the quantum
simulation of complex dissipative systems
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Outline
QUANTUM RATCHETS

• A model for quantum directed transport (ratchet effect) in a periodic chaotic
system with dissipation, in presence of lattice asymmetry and unbiased driving

• Discuss possible experimental implementation with cold atoms in optical lattices

EHRENFEST EXPLOSION

• It is possible to recover classical-like chaotic dynamics (positive Lyapunov
exponent of quantum trajectories) in a dissipative system

• Interplay between the wave packet collapse due to dissipation and the wave
packet explosion induced by exponential instability within the Ehrenfest time
scale: collapse to explosion transition
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The Feynman ratchet

Can useful work be extracted out of unbiased microscopic random fluctuations if
all acting forces and temperatures gradients average out to zero?

(taken from D.Astumian, Scientific

American, July 2001)

Thermal equilibrium: the gas surrounding
the paddles and the ratchet (plus the pawl)
are at the same temperature

In spite of the built asymmetry no preferential
direction of motion is possible. Otherwise,
we could implement a perpetuum mobile, in
contradiction with the second law of thermo-
dynamics
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Brownian motors

To build a Brownian motor drive the system out of equilibrium

Cold

Cold

Hot

Working principle of a Brownian motor driven by temperature oscillation
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Another model of Brownian motor: a pulsating (flashing) ratchet

On

On

Off
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Quantum ratchets

Quantum tunneling provides a second
mechanism (the first being the thermal
activation) to overcome energy barriers
and lead to directed motion

(String of triangular quantum dots, Linke

et al experiments, Science, 1999)
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Quantum ratchets in dissipative chaotic systems,
Phys. Rev. Lett. 94, 164101 (2005)

A deterministic model of quantum chaotic dissipative ratchet

Particle moving in a kicked periodic asymmetric potential

V (x, τ) = k
[
cos(x) +

a

2
cos(2x + φ)

] +∞∑
m=−∞

δ(τ −mT ),

Classical evolution in one period described by the map

{
I = (1− γ)I + k(sin(x) + a sin(2x + φ)),
x = x + TI,

0 < γ < 1 dissipation parameter (velocity proportional damping):
γ = 1 overdamping – γ = 0 Hamiltonian evolution

G.G. Carlo, G.Benenti, G.Casati, D.L.Shepelyansky



Study of the quantized model

Quantization rules: x → x̂, I → Î = −i(d/dx) (we set h̄ = 1)

Since [x̂, p̂] = iT , the effective Planck constant is h̄eff = T

In order to simulate a dissipative environment in the quantum model we consider a master

equation in the Lindblad form for the density operator ρ̂ of the system:

˙̂ρ = −i[Ĥs, ρ̂]− 1

2

2X
µ=1

{L̂†µL̂µ, ρ̂}+

2X
µ=1

L̂µρ̂L̂
†
µ

Ĥs = n̂2/2 + V (x̂, τ) system Hamiltonian

L̂µ Lindblad operators

{ , } denotes the anticommutator



The dissipation model

We assume that dissipation is described by the lowering operators

L̂1 = g
∑

I

√
I + 1 |I〉 〈I + 1|,

L̂2 = g
∑

I

√
I + 1 | − I〉 〈−I − 1|, n = 0, 1, ...

These Lindblad operators can be obtained by considering the interaction between
the system and a bosonic bath. The master equation is then derived, at zero
temperature, in the usual weak coupling and Markov approximations

Requiring that at short times 〈p〉 evolves like in the classical case, as it should be
according to the Ehrenfest theorem, we obtain g =

√
− ln(1− γ)

Simulation of quantum dissipation with quantum trajectories



Asymmetric quantum strange attractor
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Phase space pictures for K = 7,
γ = 0.3, φ = π/2, a = 0.7, after
100 kicks: classical Poincaré sec-
tions (left) and quantum Husimi
functions at h̄eff = 0.012 (right)



Ratchet effect
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Average momentum 〈p〉 as a function of time t (measured in number of kicks)



Control the direction of transport

0 20 40 60 80 100
t

−1

−0.5

0

0.5

1

<p
>

φ=π/2

φ=2π/5

φ=0

φ=−2π/5

φ=−π/2

Zero net current for φ = nπ, due to the space symmetry V (x, τ) = V (−x, τ)

In general 〈p〉−φ = −〈p〉φ, due to the symmetry Vφ(x, τ) = V−φ(−x, τ)



Stability under noise effects
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Memoryless fluctuations in the kicking strength: K → Kε(t) = K + ε(t), ε(t) ∈ [−ε, +ε]

The ratchet effect survives up to a noise strength ε of the order of the kicking strength K



Possible experimental implementation

Possible experimental implementations with cold atoms in a periodic standing
wave of light

Values K = 7, h̄eff ∼ 1 were used in the experimental implementations of the
kicked rotor model

Friction force can be implemented by means of Doppler cooling techniques

State reconstruction techniques could in principle allow the experimental obser-
vation of a quantum strange ratchet attractor

The ratchet effect is robust when noise is added; due to the presence of a strange
attractor, the stationary current is independent of the initial conditions



Dissipative quantum chaos: transition from wave packet collapse to explosion,
preprint quant-ph/0503081

Dissipative quantum chaos: transition from wave packet
collapse to wave packet explosion

The instability of classical dynamics leads to exponentially fast spreading of the
quantum wave packet on the logarithmically short Ehrenfest time scale

tE ∼ | ln h̄|
λ

λ Lyapunov exponent, h̄ effective Planck constant

After the logarithmically short Ehrenfest time a description based on classical
trajectories is meaningless for a closed quantum system

What is the interplay between wave packet explosion (delocalization) induced by
chaotic dynamics and wave packet collapse (localization) caused by dissipation?

G.G. Carlo, G.Benenti, D.L.Shepelyansky



A model of dissipative chaotic dynamics

Markovian master equation ˙̂ρ = −i[Ĥ, ρ̂]− 1
2

∑
µ

{L̂†µL̂µ, ρ̂}+
∑

µ

L̂µρ̂L̂†µ

Kicked rotator Hamiltonian Ĥ =
Î2

2
+ k cos (x̂)

+∞∑
m=−∞

δ(τ −mT )

Dissipation described by the Lindblad operators

L̂1 = g
∑

I

√
I + 1 |I〉 〈I + 1|, L̂2 = g

∑

I

√
I + 1 | − I〉 〈−I − 1|

At the classical limit, the evolution of the system in one period is described by
the Zaslavsky map {

It+1 = (1− γ)It + k sin xt,
xt+1 = xt + TIt+1,



Quantum trajectories

The changing state of a single open quantum system is represented directly by a
stochastically evolving quantum wave function, as for a single run of a laboratory
experiment - a single evolution is termed a quantum trajectory



Collapse to explosion transition
(going from stron to weak dissipation)

K = 7, h̄ = 0.012, γ = 0.5 and γ = 0.01



Classical-like evolution of quantum trajectories
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γ=0.5, K=7, hbar=0.012

f ≡ 〈p〉t+1 − (1− γ)〈p〉t, 〈p〉t = 〈x〉t − 〈x〉t−1

From classical dynamics we expect f(x) = K sin x - Quantum fluctuations ∝
√

h̄



Wave packet dispersion

σt =
√

(∆x)2t + (∆p)2t , cumulative average σt ≡ 1
t

t∑

j=1

σj
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Localization - delocalization crossover
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Ehrenfest explosion

Due to the exponential instability of chaotic dynamics the wave packet spreads
exponentially and for times shorter than the Ehrenfest time we have σt ∼√

h̄ exp(λt)

The dissipation localizes the wave packet on a time scale of the order of 1/γ

Therefore, for 1/γ ¿ tE ∼ | ln h̄|/λ, we obtain σ ∼
√

h̄ exp(λ/γ) ¿ 1

In contrast, for 1/γ > tE the chaotic wave packet explosion dominates over
dissipation and we have complete delocalization over the angle variable

In this case, the wave packet spreads algebraically due to diffusion for t > tE: for
t À tE we have σt ∼

√
D(K)t, D(K) ≈ K2/2 being the diffusion coefficient;

this regime continues up to the dissipation time 1/γ, so that σ ∼
√

D(K)/γ



Tthe transition from collapse to explosion (Ehrenfest explosion) takes place at

tE ∼ | ln h̄|
λ

∼ 1
γ

Therefore, even for infinitesimal dissipation strengths the quantum wave packet
is eventually localized when h̄ → 0: we have limh̄→0 σ = 0; in contrast, in the
Hamiltonian case (γ = 0) limh̄→0 σ = ∞
Only for open quantum systems the classical concept of trajectory is meaningful
for arbitrarily long times; on the contrary, for Hamiltonian systems a description
based on wave packet trajectories is possible only up to the Ehrenfest time scale



Conclusions

• Cold atoms and Bose-Einstein condensates exposed to time-dependent standing
waves of light may provide an ideal test bed to explore dissipative quantum chaos

• Quantum ratchets: explore thermal effects on the ratchet current; adapt the
proposed ratchet model to condensates (including Gross-Pitaevsky nonlinearity
effects); study the impact of dynamical effects such as bifurcations on the ratchet
phenomenon

• Ehrenfest explosion: investigate the dynamical stability of condensates subjected
to chaotic dynamics and dissipation


