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Abstract





We propose to expand the nonadiabatic solution of the Schrödinger equation as a linear combination of explicitly correlated exponentials. A series of trial wavefunctions has been optimized minimizing the variance of the local energy for the � EMBED Equation.2  ��� and dipositronium (Ps2) molecules in their ground state, without resorting to the Born-Oppenheimer approximation: the calculations have been performed using the Variational Monte Carlo method. A 6-term wavefunction has been used in  diffusion Monte Carlo simulations to compute the exact energy of the Ps2  system.


Introduction


The-Born Oppenheimer approximation (BO) [born] is of central importance in quantum chemistry, allowing to separate the nuclear motion from the electronic motion. Within this approximation, the electronic wavefunction can be determined by solving the electronic Schrödinger equation, which depends parametrically on the nuclear coordinates. To the chemist this gives the approximate, but nevertheless extremely useful concept of potential energy surface, which can then be used to compute the nuclear dynamics. The full treatement of the complete many body Hamiltonian is usually computationally extremely demanding; as a result the Born-Oppenheimer approximation is employed in practically all calculations. Only for very small systems, such as the hydrogen molecular ion and its isotopes, and the hydrogen molecule and its isotopes, the  solution of the Schrödinger equation without the BO approximation has been attempted [review], usually employing specialized trial wave functions. The BO approximation is, usually, a very good approximation, however there are systems [review] for which it is invalid, such as the positronium molecule studied here, and so it is important to develop computational methods to treat the many body Schrödinger equation without resorting to the BO approximation.


Almost all methods developed in the past to compute nonadiabatic wavefunctions start with the separation of the motion of the center of mass. This is usually accomplished through a coordinate transformation, in order to rewrite the Hamiltonian operator including only the internal coordinates. However, after the separation of the center of mass, the form of the Laplacian operator is quite complicated, leading to intractable integrals. Furthermore, the choice of the internal coordinate system is not unique, and there is little guidance on how to choose the most appropriate reference frame.


To cope with this problem, a recently developed approach [pol1] does not rigorously separate the center of mass motion; rather one tries to eliminate the kinetic energy associated to the motion of the external degrees of freedom introducing a “penalty” operator into the variational principle, or subtracting the center of mass kinetic energy from the total energy.


The problem of the solution of the complete Schrödinger equation has recently received a renewed attention with the development of various methods [pol1]. Since, in a sense, the problem is to introduce into the trial wavefunction a “correlation” between the electrons and the nuclei, it has been natural to extend methods used to explicitly build the electron correlation into the trial wavefunction.


A very efficient and effective approach to accurately describe the electron correlation is the explicit inclusion of the interelectronic coordinates into an approximate wavefunction; this is an old and well known method to build very accurate solutions of the Schrödinger equation. Hylleraas [hy1], James and Coolidge [jc] and Kolos and Wolniewicz [kw] showed how to obtain very good results for two electron systems by including the interelectronic distance � EMBED Equation.2  ��� into the wavefunction. Unfortunately it is not easy to generalize these methods for systems with more than two electrons since the resulting integrals are extremely difficult to evaluate. In 1960 Boys [boys] and Singer [sing] suggested to use explicitly correlated Gaussian (CG) functions as this choice leads to integrals in closed form [lest]. More recently various researchers have shown that these explicitly correlated Gaussian functions can give very accurate results on a variety of two [ale], three [cenc1] and four [cenc2] electron systems, provided that a careful optimization of the nonlinear parameters is performed.


These functions have been used in a number of papers to treat nonadiabatic systems [pol1,pol2,king]. Unfortunately Gaussian functions poorly reproduces the cusp conditions [kato], i.e. the behaviour of the wavefunction when two particles collide, and this has the unpleasant effect of slowing down the convergence. As a result, a very large number of functions is needed to reach high accuracy, increasing the number of nonlinear parameters, and making their optimization a very demanding task.


In a previous paper [bre] we have proposed to expand the solution of the electronic Schrödinger equation as a linear expansion of explicitely correlated exponentials. We showed that this choice allows a good description of the cusp conditions and reduces the number of terms needed to obtain the desired accuracy by an order of magnitude, in comparison with correlated Gaussians expansions. This expansion was applied to the hydrogen molecule and the � EMBED Equation.2  ��� ion, and was shown to converge rapidly. In this paper we explore the possibility to extend the proposed functional form to a nonadiabatic description of molecular systems.


This choice of  trial wavefunction precludes the possibility of computing the needed integrals analytically, so we turn to the Variational Monte Carlo (VMC) method [cep] to compute the expectation value of the energy. In recent years, the VMC method has been successfully used for this task with a variety of explicitly correlated trial wavefunctions. The power of the method relies on the fact that the Monte Carlo technique estimates the energy, and all the desired properties, without any need of computing matrix elements. In this way one is completely free in the choice of the trial wavefunction. The energy is estimated by averaging the local energy HY/Y during a random walk in the configuration space using a Metropolis algorithm [met] or a Langevin algorithm [rey]. VMC is also used in the optimization of the parameters of the trial wavefunction, as described in detail by Umrigar [umr]: the variance of the local energy is minimized instead of the energy itself since this has been proved to be numerically much more stable.


Trial wavefunction form


We propose to approximate the total wavefunction of  systems with N electrons and M nuclei with the linear expansion (we consider here only rotationless states)


� EMBED Equation.2  ���									(1)


where


� EMBED Equation.2  ���						(2)


In this equation � EMBED Equation.2  ��� is the antisymmetrizer operator, � EMBED Equation.2  ��� is an operator used to fix the space symmetry, fi(r) is a function of the electronic (x,y,z) and nuclear coordinates (X,Y,Z)


� EMBED Equation.2  ���				(3)


where a,b,g, and d are appropriate integers greater than or equal to zero. ki is the i-th vector of parameters, while d is the vector of the electron-electron and electron-nucleus distances. gi(R) is a function of the internuclear distances. � EMBED Equation.2  ��� is the correct spin eigenfunction for the electrons and the nuclei.


This form ensures a good description of the cusps and has the correct spin and space symmetry. However the price that has to be paid is the inability to compute analytically the matrix elements of the Hamiltonian, so a numerical method must be used to evaluate the expectation value of the energy. The VMC method is well suited for this purpose since it only requires the evaluation of the wavefunction, its gradient and its Laplacian, and these are easily computed.


A point worth of notice is that, unlike other methods, we do not have to explicitely eliminate the coordinates of the center of mass, usually a source of mathematical difficulties. The Variational Monte Carlo methods automatically gives the internal energy, since the trial wavefunction is traslationally invariant.


The � EMBED Equation.2  ��� molecule


The purpose of this work is to explore the capabilities of the proposed expansion to treat nonadiabatic systems. As a benchmark we studied the ground state of the hydrogen molecule ion, which is a non trivial test, in spite of its apparent simplicity, and for which  there are several very accurate calculations which to compare with.


For this system we optimized a series of wavefunctions of the form


� EMBED Equation.2  ���					(4)


where A and B refer to the nuclei and � EMBED Equation.2  ��� is the permutation operator for the nuclei.


For an harmonic potential the nuclear wavefunction is a Gaussian � EMBED Equation.2  ��� centered at the equilibrium geometry: expanding the exponent one gets a linear and quadratic term in the internuclear distance R whose parameters were independently optimized


For each term in equation (4) there are five parameters to optimize, one linear and four nonlinear. We optimized them minimizing the variance of the local energy using a fixed sample of  10000 VMC configurations, as described in Ref. [umr]. Results for expansions with various number of terms are shown in Table 1.


It can be seen that this expansion is quickly convergent. A single term alone recovers 99.84% and a two-term function already recovers 99.97% of the exact energy [bish], while the 10-term wavefunction has an error in the energy of the order of 10-6 hartree. The linear expansion (4) works exceptionally well, giving a very fast convergency. 


These results are even more striking if we compare them with linear expansions of explicitly correlated Gaussians: two terms of our expansion are already better than Gaussian expansions with more than 200 terms [poshu,review] (the result with 205 CG is better than the one with 256 terms due to different nonlinear optimization schemes). The improved quality of our basis can be explained by the fact that Gaussians poorly reproduce the cusps, while the exponentials we used can account for them. Also included in the Table is a result obtained by Kozlowski and Adamowicz with 70 explicitely correlated Gaussians. In their paper [pol1] they regretted they could not compare their results with a Quantum Monte Carlo calculation, as in the literature they found only a nonadiabatic calculation on the hydrogen molecule published by Anderson and coworkers [and], but not on the hydrogen molecule ion. We would like to point out that such a comparison would be unfair for all the variational methods, since they provide only an upper bound to the correct energy. On the contrary, for the hydrogen molecule and its positive ion, being nodeless systems, the Quantum Monte Carlo method gives the exact answer. Instead, the Variational Monte Carlo method, that we have used here, gives an upper bound to the energy, being simply an application of the Metropolis method [met] to the calculation of the expectation value of the energy of a given trial wavefunction using the variational principle. As such, this result is directly comparable to the more common approach of using explicitely correlated gaussians.


The positronium molecule


Having checked the overall goodness of our ansatz for a nonadiabatic wavefunction, we studied the positronium molecule Ps2, formed by two electrons and two positrons and sometimes called “dipositronium”. This system has been the subject of several theoretical investigations since the pionieriing work of Wheeler [We] and Hylleraas and Ore [hy]. More recently, the experimental observation of the Ps- (e+e-e-) has renewed the attention on systems containing positronium, and on Ps2 in particular, since this molecule has not yet been observed experimentally and so accurate computed estimates of its properties are of great importance.


It is obvious that for this system the Born-Oppenheimer approximation cannot be applied, since the four particles have the same mass and must be treated on equal footing. For this reason all interparticle correlations are expected to be equally important, and our ansatz, containing all interparticle distances, should be a good approximation of the ground state wavefunction.


We optimized trial wavefunctions of the form


� EMBED Equation.2  ���					(5)


where the numerical index indicates the four particles. � EMBED Equation.2  ��� is the operator used to fix the correct permutational symmetry of the system [king]. In particular, one has to take into account the fact that the Hamiltonian is invariant not only with respect to the exchange of two identical particles, but also with respect to the double exchange of the two positive particles with the negative ones.


The trial wavefunctions have been optimized minimizing the variance of the local energy using 10000 configurations, and their variational energies have been estimated using a VMC program. The results are shown in Table 2 along with the exact energy and some reference calculations. The energies are quickly convergent, as can be seen from the comparison with a 400 Hylleraas-like trial wavefunction [Ho] and a 300-term correlated Gaussian [review]. For Ps2 our 12-term wavefunction is already at 0.00014 hartree from the estimated exact energy and we could have improved its quality by simply adding more terms; however it is more efficient to use optimized correlated wavefunctions as guiding functions in the Diffusion Monte Carlo (DMC) method or in other similar quantum Monte Carlo simulation techniques to recover the exact energy or a very good approximation to the exact energy [les2]. These methods need simple, compact and easy to evaluate trial wavefunctions, so we used our six terms wavefunction in a diffusion Monte Carlo simulation of the ground state of  the positronium molecule. The ground state of the positronium molecule is positive everywhere and for systems with this property the diffusion Monte Carlo method can estimate the exact energy within the statistical error. The simulation has been performed using 4000 walkers and a time step of 0.001 hartree-1. We checked, with other simulations using larger time steps, that the time step bias [les2] for this value  is smaller than the statistical error. As can be seen from the table, the diffusion Monte Carlo simulation predicts a ground state energy of -0.51601 +/- 0.00001, where the best available variational value is -0.51600 [fro].


Conclusions


We propose as an approximate solution of the Schrödinger equation for nonadiabatic systems a linear expansion of exponential functions of all the electron-electron and electron-nucleus distances multiplied by a function of the internuclear  distances. The expectation values of the energy and other properties must be estimated by a numerical method, the variational Monte Carlo method being our preferred choice.


A relatively small number of terms gives very good expectation values of the energy for the � EMBED Equation.2  ��� and � EMBED Equation.2  ��� in their ground state. In both cases the quality of the optimized wavefunction is high, and of the same quality as linear expansions of correlated Gaussians which include at least an order of magnitude of terms more. The accuracy of our optimized wavefunctions is demonstrated in the case of the � EMBED Equation.2  ��� molecule: when used as trial functions in a Diffusion Monte Carlo simulation, they lead to the exact results, within a very small statistical error, a proof of their overall goodness.
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�
Table 1


� EMBED Equation.2  ��� molecule ground state


Terms�
Energy (hartree)�
s (hartree)�
�
1�
-0.596235�
0.000009�
�
2�
-0.596982�
0.000006�
�
3�
-0.597006�
0.000005�
�
6�
-0.597113�
0.000003�
�
10�
-0.597136�
0.000003�
�
Exacta�
-0.597139�
 �
�
70 CGb�
-0.594550�
�
�
256 CGc�
-0.596030�
 �
�
205 CGd�
-0.596901�
 �
�



a Ref [bish]


b Ref [pol1]


c Ref [poshu]


d Ref [review]


�



Table 2





Ps2 molecule ground state





 Terms�
Energy (hartree)�
s (hartree)�
�
1�
-0.50328�
0.00001�
�
2�
-0.51438�
0.00001�
�
3�
-0.51506�
0.00001�
�
6�
-0.51556�
0.00001�
�
10�
-0.51573�
0.00001�
�
12�
-0.51586�
0.00002�
�
DMCa�
-0.51601�
0.00001�
�
best variationalb�
-0.51600�
�
�
400 Hylleraasc�
-0.51510 �
�
�
300 CGd�
-0.51598�
�
�
32 CGe�
-0.51538�
�
�



a diffusion Monte Carlo simulation using the 6-term wavefunction as trial function.


b Ref [fro]


c Ref [Ho]


d Ref [king]


e Ref [pol3]
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