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The radial distribution function of a fluid of rigid spheres has been calculated using IBM equipment by
a Monte-Carlo method which is valid only at relatively low densities. Up to the highest densities studied,
20 percent of closest packing, the radial distribution function agrees within the precision of the method with
the one calculated by the use of the superposition approximation in triplet space. Another Monte-Carlo
approach was used at a higher density, 72.4 percent of closest packing, and the results agree with published

computations.

L

KNOWLEDGE of the distribution of molecules

relative to each other in a fluid permits the
prediction of all the thermodynamic properties.! It
has thus been the aim of a number of investigators®™ to
evaluate this distribution function from the general
principles of statistical mechanics for a given system
of molecules. The mathematical problems involved in
this procedure are made formidable by the multiple
interactions which have to be taken into account as
the density of the system becomes appreciable. Various
mathematical approximations have therefore been
introduced to make the equations tractable. For
example, the free-volume theory simplifies the problem
by letting a molecule interact with the average potential
of its neighbors. The superposition approximation® does
not smooth the interaction quite so drastically, since
the potential of the average forces among three mole-
cules is written as the sum of pair potentials of average
force.

The error introduced by these mathematical approxi-
mations is difficult to estimate unless a more exact
procedure is found. With modern computing facilities
the Monte Carlo method becomes such a feasible
procedure, although it has its own limitations.’$ For the
hard-sphere fluid, however, the Monte-Carlo approach
is quite straightforward. Since there are no fluctuations
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in energy, all possible states of the system are weighted
equally. As long as the calculation is done so that
the statistics favor none of the possible states of the
system more than any other, the distribution func-
tion can be obtained as exactly as desired. The accuracy
is limited by the geometric size of the sample and the
amount of statistical data accumulated.

IL

The procedure adopted was as follows: A unit cube
(volume, v=1) was set up, and the coordinates of a
center of a sphere inside that cube were specified by a
“random” nine-decimal-digit number. The first three
digits specified the x coordinate, the next three the y
coordinate, and the last three the z coordinate of the
particle. The sphere was given the diameter, d= (0.02)%.
Additional particles were then introduced into the
unit cube at positions indicated by new “random”
nine-digit numbers. These numbers were generated by
successive squaring of the nine-digit numbers, using
a middle group of nine digits as the next “random”
number. A new particle was left in the box if it did not
overlap with any particles already in place; otherwise
it was rejected and a new particle was tried.

The box could contain 500 particles if they were closely
packed, and approximately half of these would be at
the surface. In order to ameliorate the inaccuracies due
to the small sample volume, periodic boundary condi-
tions were introduced; that is, on all sides of the cube
identical cubes were also built up. This procedure
avoids surface effects and is analogous to a cellular
treatment of fluids in which the cells are quite large and
the restriction of single occupancy is not imposed.

The IBM 604 electronic calculator was used to check
whether a new particle overlapped any of the particles
already in the box or their counterparts in the adjacent
boxes. The machine calculated for a new particle the
distance to each particle in the central box or to its
reflection in the adjacent boxes, whichever was the
closest. The operations involved then were to tabulate
for a new particle having coordinates #, v, and z the
quantities Ax, Ay, and Az, where Ax stands for x—ux;,
x—x;+1, or x—x,—1, whichever has the smallest

417



418

. A
\/\J Y/

Lo 2 L4 8 20 22 24 2.6 28 30
X

Fic. 1. The radial distribution function at a
density corresponding to Ay=12.86.

magnitude, and similarly for the gquantities Ay and
Az, The minimum squared distance, (Ax?+ Ay*-+Az?),
to a particle located in the central box at x;, ¥, and z;
was then calculated and compared to @*=0.02. The
new particle was rejected if (Ax®+Ay*4A2%) was less
than 0.02 for any particle already in the box. By this
procedure the IBM cards had printed on them the
squared distances for any new member to all the old
members. This tally of distances is the information
needed to evaluate the distribution function.

As more and more particles were placed in the box the
rejection rate increased very rapidly. A total of 98
particles was put in the box, which corresponds to a
Ao= (4xNd®) /v of 3.460 (20 percent of closest packing),
in order to compare the distribution function with one
that had been obtained at the same density with the
use of the superposition approximation. However, it
proved impractical to go to any appreciably higher
density by this method since the acceptance rate for
the last few particles was about one in ten.

A box prepared in this way represents a small sample
of an actual system. Rather than dealing with a bigger
box so that statistical errors are reduced, it proved more
economical to prepare an assembly of such boxes,
although the effect of the periodic boundary condition
is more serious and the distribution function becomes
less accurate at large separations. Eleven boxes were
prepared and the distribution function calculated from
them. The squared distances were listed in order of
increasing magnitude and the distribution function,
g(R), calculated by noting the number, An, of these
distances in each interval AR of distance:

®) An
g( _N(N— 1) )
—4wR?AR

2

where &V is the total number of particles in the box and
R is the distance separating any representative pair of
molecules. Changing to a scale of distance, %, in which
the spheres have a diameter of unity, R must be
replaced by R= (0.02)%x,
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Table I gives a comparison of the radial distribution
function obtained in this way and the one obtained by
solving the integral equation® It can be seen that
within statistical errors the two are the same. Since
the integral equation depends on the approximation of
superposition in triplet space but the Monte-Carlo
method does not, it is apparent that within the precision
of the present study this assumption is valid at the
density, A¢=3.460, studied and at all lower ones. It
should be pointed out, however, that at this density
the number of triplets whose centers at a given time
are close together is quite small.

III.

At higher densities a different procedure must be
adopted. The one that was used is identical to the
method already described in the literature.5-® A unit

Tasre I. Comparison of the radial distribution functions.

% g (x) gb(x) [e*(x)1/[eb(x)]1—1 Std. Dev,e
1.04 1.399 1.374 0.018 0.052
1.12 1.313 1.286 0.021 0.051
1.20 1.242 1.098 0.131 0.049
1.28 1.181 1.142 0.035 0.048
1.36 1.129 1.200 —~0.059 0.047
1.44 1.083 1.108 —0.023 0.046
1.52 1.049 1.058 —0.008 0.045
1.60 1.018 1.006 0.012 0.044
1.68 (.996 1.057 —0.058 0.043
1.76 0.981 1.013 —0.032 0.042
1.84 0.974 0.993 —0.019 0.041
1.92 0.972 0.990 —0.018 0.041
2.00 0,980 0.994 —-0.014 0,040
2.08 0.989 0.922 0.072 0.040
2.16 0.995 0.968 0.027 (.039
2.24 1.000 1.013 - 0.013 0.038
2.32 1.002 1.021 —0.018 0.038
240 1.003 1.028 —0.024 0.037
2.48 1.004 1.013 ~{.009 0.036
2.56 1.003 0,981 0.022 0.036

= From solution of integral equation.

b From Monte-Carlo method.

¢ Statlstlcal standard deviation from the average in the quantity [g*{(z)]/
[e(x)]—1. . Margenau and G. Murphy, The Mathematics of Physics
and Chemistry (D 'Van Nostrand Company, Inc., New York, 1943), p. 422,

cube was employed containing 80 spheres of diameter
d=(14/256)}, initially in a hexagonal arrangement,
After two “runs” the orderliness of the initial arrange-
ment seemed to be washed out. A “run” consists of an
attempted random displacement of each sphere in the

box. Figure 1 is a graph of the distribution function
obtained from a total of 7 runs of which the first
two were not counted. Periodic boundary conditions
were applied as previously. The general features of
the graph agree with the published distribution func-
tions obtained by this method.® The most notable fact
is that at these higher densities the peak of the distri-
bution function does not occur at the point of contact
of the spheres, At the density investigated, 72.4 percent
of closest packing, corresponding to a value of
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Ao=12.86, a comparison with the distribution function
from the solution of the integral equation is not possible,
since that method breaks down.?
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The statistical mechanical theory of plane and spherical interfaces is developed on the basis of the virial
theorem and the Gibbsian mechanical and thermodynamic definitions of surface tension. The expressions
for the relevant thermodynamic functions in terms of molecular variables are employed in a discussion of
the curvature dependence of surface tension which leads to an asymptotic expansion of the grand partition
function in terms of the geometrical parameters that characterize the interface and thus provide a criterion

for the range of validity of macroscopic concepts.

L

T is the purpose of this paper to discuss the detailed
molecular theory of surface tension whose chief
results were anticipated in our earlier extension of the
phenomenological treatment.! The calculations of
superficial phenomena which will be presented are
carried out on the basis of both the thermodynamic and
mechanical definitions of surface tension. The appro-
priate techniques employed with these alternative
definitions lead to the requisite identical results. A
brief discussion of plane interfaces precedes the treat-
ment of the spherical interface.

For the purpose of this discussion it will be con-
venient to place a Gibbs? dividing surface in the
spherical transition zone separating the liquid phase «
from the vapor phase 8. It is the function of this divid-
ing surface to divide the total volume into a volume V,
containing the liquid phase and a volume Vg containing
the vapor phase. With this convention the thermo-
dynamic definition of surface tension may then be based
on the fundamental equation for the reversible change
in Helmholtz free energy A of a small segment of the
two phase system which is characterized by the area s
and the curvature ¢ of the dividing surface

A3)-s3)

¥ C
+—ds+—de, (1)
T T

where E and N are the energy and number of moles of
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the segment of the one component system, 7" and u
are its temperature and chemical potential, ¥ is the
generalized surface tension, and C is the Gibbs curva-
ture term. The pressure p, existing in the interior of
the bulk phase « is determined by the pressure pg of
the bulk phase 8 by the condition of uniformity of the
chemical potential 4 in the two phases. In order to give
explicit recognition to the open nature of the two phase
system and to facilitate the physical interpretation of
the theory which is presented in Sec. IV it is con-
venient to introduce the invariant function Q defined
by the equation

Q=A—Np=ysFE)—p V.—psVs. (2)

It is of interest to remark that in applications of the
preceding relation to liquids it is generally assumed
that the surface tension y may be set equal to the sur-
face free energy v-E), However, an examination of
interfaces with unequal principal curvatures ¢; and ¢;
shows that this identification is only strictly valid when
it is assumed that the stress ellipsoid is asymptotically
one of revolution about the normal to the surface.
Since in the present investigation this restriction is
satisfied, the equivalence of v and ¥‘F®, which con-
stitutes the basic assumption in the derivation of the
generalized' adsorption equation for spherical inter-
faces, is to be considered rigorous and it is possible to
transform Eq. (1) to the form

(3)-2(F) 7o (3)

+-ds+»—dc, 3)

Q=vs—paVa—1psVs. (3"



