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Further Results on Monte Carlo Equations of State
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The equation of state of three-dimensional hard spheres has been obtained by the Monte Carlo method.
Some qualitative results for a system of two-dimensional molecules with Lennard-Jones interaction are also
given, as well as a general discussion of the usefulness and limitations of the Monte Carlo method.

I. INTRODUCTION

HE purpose of this paper is to present some further

results obtained by the Monte Carlo method.!
Some qualitative results have been obtained for the
system of two-dimensional molecules with Lennard-
Jones interaction, and the equation of state for three-
dimensional rigid spheres has been obtained.

II. QUALITATIVE RESULTS FOR THE SYSTEM OF
TWO-DIMENSIONAL MOLECULES WITH
LENNARD-JONES INTERACTION

Some work has been done on a two-dimensional sys-
tem of fifty-six molecules with intermolecular potential :

V=(a/r®)—(b/r%). (1

This work has been pursued far enough to obtain
quantitative results, but does show some interesting
qualitative features.

In particular, it was possible to observe the existence
of the liquid-gas phase transition. Figure 1 is a typical
plot of the positions of the fifty-six molecules at a
temperature equal to one-half the well depth and for
various values of 4/A4. Here, A4 is the area per molecule,
and A, is the area per molecule in a close-packed lattice
when the molecules are a distance apart, such that
V=0,

Figure 1(a) (4/4,=1) represents a quite tightly
packed configuration, hence the molecules are nearly in
a regular lattice. (It should be borne in mind that due
to our periodicity condition,! molecules near one edge
of the square are neighbors of those near the opposite
edge of the square.)

Figure 1(b) (4/40=1.6) shows the molecules in a
more expanded configuration in which they continue
to fill up the square, although in a more irregular
fashion. This configuration is close to the boiling point,

Figures 1(c) and 1(d) (4/40=2 and A/4,=2.52)
represent still more expanded configurations. It will be
observed that the molecules no longer continue to fill
the square but that cavitation occurs. This presumably
is the result of the phase transition—the area of the
square becomes greater than the area of the liquid at its
hoiling point, and hence the liquid does not fill the

! Metropolis, Rosenbluth, Rosenbluth, Teller, and Teller,

J. Chem. Phys. 21, 1087 (1953). This paper discusses in detail the
Monte Carlo method.

square. Since the density of the gas is very low, the
gaseous phase appears as holes in the fluid.

The critical temperature phenomenon is also ob-
served. Thus for high temperatures (the critical tem-
perature appears very roughly equal to the well depth)
cavitation no longer occurs.

The general shape of the isotherms is also in agree-
ment with typical liquid-gas isotherms. However, it
seems very difficult to obtain accurate quantitative re-
sults in the interesting transition regions.

There are several reasons for this:

(1) For our small sample of molecules the surface be-
tween fluid and bubbles is quite large and many mole-
cules are on the surface. Thus, a large surface energy and
pressure is introduced.

(2) The process of forming or destroying bubbles is a
lengthy one, requiring many moves. Thus, it is difficult
to reach equilibrium. In fact, over a considerable region
of density a bubble will not be formed spontaneously
but will persist once introduced into the fluid.

(3) For densities where the molecules are a distance
apart corresponding to the potential minimum one
must expect large fluctuations in the pressure. This
comes about because the virial, rdV /dr, whose average
value determines the pressure, varies strongly with the
intermolecular distance while the energy and hence the
probability factor exp(— E/kT) does not.

Thus, one cannot expect the Monte Carlo method to
give great detail in the neighborhood of phase transi-
tions, or certainly in the critical region, though it
should be possible, for example, to determine the
critical constants withinin 20 percent. In a one-phase
region the Monte Carlo method should be feasible with
an arbitrary intermolecular potential.

In view of the somewhat academic nature of the two-
dimensional Lennard-Jones system, and the large
amount of work which would be necessary to obtain
quantitative results, no further work is contemplated
on this case.

IIl. THREE-DIMENSIONAL RIGID SPHERES

Most of the work on three-dimensional rigid spheres
was done with a sample of 256 molecules starting from a
face-centered-cubic lattice. About twenty different
densities were computed, and at each density each
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Fi1c. 1. Typical plots of the positions of the 56 molecules for a two-dimensional system with a Lennard-Jones type interaction

between pairs.

The temperature is one-half the well depth. The ratio 4, the area, to 4, the area in a close packed system with the

nearest neighbor distance such as to make the potential energy of nearest neighbors zero, 1s varied from 1 t0 2.52 in the four diagrams.

molecule was moved about 100 times. This seemed
quite sufficient for attaining equilibrium and reducing
the statistical error below 5 percent. This program
required about 150 hours of computing time on the
Los Alamos MANIAC.

At each density the radial distribution function was
obtained, and from it the pressure by means of the
well known formula :

vV 2
——1=—d¢n(1). (2)
kT 3

Here, d, is the molecular diameter, and n(1) is the den-
sity of surrounding molecules at the surface of a mole-
cule.

The equation of state is shown in Fig. 2 and Table I.
Here (pV/ET)—1 is plotted against (V/V,y)—1. V is
the volume per molecule, and Vy the volume per mole-
cule at the closest possible packing.

The equation of state agrees at low densities with the
virial expansion as it should. At high densities it agrees
fairly well with the free volume equation of state?

*W. W. Wood, J. Chem. Phys. 20, 1334 (1952).
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although not nearly as well as in the two-dimensional
case. At high densities it disagrees strongly with the
superposition theory of Kirkwood and Born-Green.?
It should be noted that liquids have specific volumes
about twice the close-packed specific volume of their
“equivalent hard sphere repulsive cores,” in which
region the superposition theory does not deviate too
much from our results.

Our equation of state shows no sign of a phase transi-
tion but a transition invelving only a small change in
volume, or a higher-order transition, would not have
been observed, so this evidence is not conclusive.

Figure 3 shows some radial distribution functions.
Here, n, the density of molecules surrounding a given
molecule, is plotted as a function of the distance from
the center of the given molecule. # is normalized so that
it would equal one for a uniform distribution, and R
is in units of the molecular diameter.

The curve at V/V,=1.143 is quite crystalline in
structure, showing the various layers of neighbors only
slightly smeared out from their lattice positions. An-
other interesting feature of the distribution is that its
maximum value does not occur at R=1 but rather at a
slightly greater radius. This shift of the maximum does
not occur in the two-dimensional case. Its occurrence in
three dimensions is clearly a complex many-body
phenomenon, and we have not been able to fully ex-
plain it. '

At the highest compressions [ (V/ V) <1.1] the shape
of the distribution function near R=1 is given approxi-

mately by
1 l (3)
V
0‘2( — 1) J
Vo
As the density is decreased, the maximum becomes
less proncounced and finally disappears at about V/V,
=1.25. At this point there is still a negative curvature
to the distribution function at the origin but as the
density is decreased still further to V/V,=1.5, the
curvature becomes positive.
The importance of the shape of the distribution
function near the origin is, of course, that pV/kT—1
is proportional to the molecular density at R=1 [see

Eq. (2)]. Thus, the existence of the shifted maximum
means a lowering of molecular density at R=1 and

1 R—1
J?-f————-‘,l.l—”‘ls -
V— Vr,']

TasLE I. Equation of state of three-dimensional hard spheres.
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 Kirkwood, Maun, and Alder, J. Chem. Phys. 18, 1040 (1950).
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hence a decrease in pressure. In fact, the behavior of
the equation of state at high densities—its rise relative
to the free volume equation of state as V is increased—
can be ascribed to the manner in which the distribution
function becomes successively more peaked at the
origin, :

The curve at V/V,=1.32 still shows the crystalline
structure though at this volume the peaks are quite
smeared out.

The curve at V/V,=1.8 looks quite different. Here
the distinctive peaks have disappeared and one has a
smoothly oscillating distribution function similar to
those observed in liquids and to those obtained by the
superposition theory.® The results differ from those of
the superposition theory chiefly in that the magnitude
of the oscillations is quite a bit larger for our radial
distribution functions.

The transition between the solid and liquid type dis-
tribution functions seems to occur at about V/V,=1.5.
It occurs fairly gradually, however, so that we have not
been able to say on this basis, either, whether a dis-
continuous phase transition takes place. It is interesting
to note that V/V,=1.5 is also where molecules were
first able to slip past each other, another indication of
lattice breakup. This fact facilitated the computation
at high densities since here the original nearest neigh-
bors of a molecule remained its nearest neighbors so
that it was unnecessary to search through the lattice
to determine the nearest neighbors of a molecule.

As has been mentioned earlier the indicated statistical
error in the equation of state is about 5 percent. Tt is
more difficult to estimate possible systematic errors.
These might include the finite number of molecules and
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EQN. OF STATE-3 DIMENSIONAL HARD SPHERES

Fig. 2. A log-log plot of (PV/kT)—1 versus (V/Vy)—1 for hard
spheres in three dimensions, Here ¥y is the volume per molecule
at the closest possible packing. The solid line is the result of the
Monte Carlo method as discussed in this paper; as compared to
the free volume theory (dashed line), the superposition &eory of
Kirkwood (dot-dashed line), and to a 4 term (circles) and 5 term
(triangles) virtual expansion.
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the possibility that equilibrium was not reached, i.e.,
that what we calculated was a metastable configuration
close to the initial lattice structure.

At low densities where only fairly small clusters are
important our results should be good. At very high
densities where the configuration must be nearly a
regular lattice and where our periodicity condition
should eliminate surface effects for a regular lattice our
results should also be good. It is therefore in the inter-
mediate density region where lattice breakup phe-
nomena may be occurring that systematic errors might
be large.

In order to check the effect of the finite number of
molecules some runs were made using 32 and 108
molecules. These gave results within statistical error of
the results obtained with 256.

In order to check the possibility that the system
“remembered” its initial configuration some runs were
made with the molecules initially crammed into one
corner of the cell, instead of starting from a regular
lattice. Here, too, the results were within statistical
error. While these checks are not conclusive, they are
an indication that systematic errors are not large.

Some runs were also made starting from a hexagonal-
close-packed lattice. The pressures obtained were the
same as for the face-centered cubic.
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F1c. 3. Radial distribution functions versus distance for three-
dimensional hard spheres. Here #, the density of molecules sur-
rounding a given molecule, is normalized to one for a uniform
distribution. The distance R is given in units of the molecular
diameter. Distribution functions for three volumes are shown.
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The fifth virial coefficient was calculated by Monte
Carlo evaluation of the cluster integrals.! One obtains
thus:

»V v, Voy?
———1=2.962(—-)+5.483(-—)
BT v v
+7455( +s9(V"
7) (5

The value of the coefficient of the last term, the one we
calculated, has a statistical error of about 10 percent.
Some values of (pV/kT)—1 as given by the four- and
five-term virial expansions are shown on Fig. 2. It will
be seen that the five-term expansion agrees very well
with our equation of state at low densities, Moreover,
the fact that the five-term expansion lies slightly above
the equation of state at some densities indicates that
some higher virial coefficients are negative.

Iv. CONCLUSIONS

The equation of state for three-dimensional hard
spheres casts doubt on the adequacy of the superposi-
tion approximation at high densities. The radial distri-
bution functions obtained show a clear evolution with
increasing volume from a crystalline structure to a
liquid type structure with the transition being com-
pleted at about V/V,=1.5. It is not possible to say,
however, whether a discontinuous phase transition
accurs.

Results obtained thus far lead us to feel strongly
that the Monte Carlo method is a useful tool for solv-
ing statistical mechanical problems, although it does
not appear to be feasible to obtain detailed results in
transitions regions. The authors are now working on a
modification of the method which will make it applicable
to Bose-Einstein substances at zero temperature.
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