
Cross-Section for the Hard-core Scattering from a sharp-edged Body with CylindricalSymmetry: a High-school IntroductionMarco Giliberti and Luca PerottiaSezione Didattica della Fisica, Dipartimento di Fisica dellUniversit�a di Milano, via Celoria 16, 20133 Milano ItalyaCenter for Nonlinear and Complex Systems, Universit�a degli studi dell'Insubria, Via Valleggio 11, Como 22100, Italy(July 19, 2005)Abstract:The di�erential cross-section, for the elasticscattering of material points o� a rigid bodies, obtained bythe rotation of a generic derivable convex function, is calcu-lated. The calculation is developed using elementary notionsof calculus and is therefore suitable for European High-Schoolstudents. Three particular cases are presented as examplesof the general procedure and of the physical considerationsabout the found cross-sections on which a guided discussioncan ensue in class.01.40.Gm, 01.40.EjI. INTRODUCTIONThe present paper focuses on the concept of cross-section, which is fundamental to describe and interpretthe results of scattering experiments, especially in Nu-clear and Particle Physics, where collisions between \el-ementary" particles are -if not the only- certainly theprincipal tool to investigate interactions and probe struc-tures.As the \e�ective surface" the target presents to theprobing particles, it contains all the information aboutthe nature of the interactions between probes and targetwe can extract from the experiment. In a few words, thecross-section is a key concept for the comprehension ofModern Physics.Unfortunately, the calculation of cross-sections forphysically relevant cases is usually rather long and of-ten too di�cult for European High-School students. Ex-amples, if given, are therefore generally very few. Toovercome this di�culty a simple approach and a generalformula will be here introduced for a class of interactionsfor which the concept of cross section is expecially easyto grasp: that of elastic scattering of point-like parti-cles by rigid surfaces having cylindrical symmetry. Al-though based on simple geometrical considerations, thisapproach allows an explicit calculation of cross-sectionsin many di�erent situations and with very little e�ort.The application of the formula is simple and can leadto many interesting classroom discussions about the con-cept of cross-section, thus providing a clear High-Schoollevel introduction to the concept, useful for further de-velopments.The paper is organized as follows: section II intro-duces through an example the concept of total cross-

section; section III introduces the class of interactionswe use as a model and through it illustrates the con-cept of di�erential cross-section; section IV outlines theproposed approach to the calculation of the di�erentialcross-section for the chosen class of interactions; sectionV presents three particular signi�cant cases, namely thatof ellipsoids, which reduces in the case of equal semiaxesto the classical example of spherical targets, the case ofparaboloids, which give the same angular dependence ofthe di�erential cross-section as the Rutherford experi-ment and �nally the case of targets generated by therotation of an inverse sine curve which presents a curioussimilarity to our second example; in section VI we discussour approach and propose further developments; �nally,section VII summarizes the advantages of the proposedapproach.The order of our presentation, the relevance given init to the concept of total cross section, and the use ofseveral examples have been prompted by the problemsevidentiated by a preliminary test (whose results we shalldiscuss in section VII) on 18 year old last year High-school students of an Italian \Liceo Scienti�co", whichhad been introduced to the algorithm we propose only atthe end of a traditional presentation of the subject.II. THE CONCEPT OF TOTAL CROSS-SECTIONIn the experience of many a teacher, a whimsical storycan be a good starting point for the introduction of a newconcept to a High-School audience. To introduce that ofcross-section we can start with the following one: duringa party someone releases a large number of coloured bal-loons, so that they rise in the sky. Suppose now that alunatic starts to shoot against them, as in �gure 1.What is the probability that a bullet strikes one of theballoons? It is evident that the answer depends:a) on the number of balloons per unity volume, that ison the density n of the balloons,b) on the height h of the layer of balloons,c) and on the section �T that each one of them showsto the bullets.This last quantity is what is called the total cross-section for the bullet-balloon interaction.Lets suppose, for simplicity, that:i) the lunatic is moving inside a circle of surface S whilehe shoots straight upwards at random times: �gure 1;1



ii) the balloons are su�ciently spaced from each otherand h is small, so that nh�T � 1 and the probability thata bullet hits more than one balloon is negligible (thintarget hypothesis).In this case the total area shown to the bullets by theballoons contained in the cylinder of base S and heighth is nSh�T ; and the probability P of a bullet-ballooncollision is given by its ratio to the total base surface Sof the same cylinder:P = nSh�TS = nh�T (1)Relation (1) shows the connection between the probabil-ity of collision and the total cross-section. Even if ob-tained in this very simple and special case, it has a muchwider range of applicability. In fact it may be regardedas a general de�nition of the total cross-section, providedthe target is thin, in the sense of hypothesis ii).III. THE CONCEPT OF DIFFERENTIAL CROSSSECTIONLet's now imagine another very simple situation, whichwill be helpful to introduce a deeper and more fundamen-tal concept: that of di�erential cross-section. Suppose tohave hard solids with cylindrical symmetry, held �xedat some points of the space to form a thin target, andimagine to shoot at them, along the direction of theirsymmetry axis, a well collimated beam of point-like par-ticles which ricochet on hitting the individual targets: see�gure 2.The probability that one of the particles su�ers a col-lision is evidently given by (1). However this second ex-ample di�ers from the previous one for the kind of bullet-target interaction. In this second case also more re�nedquestions can be asked, questions that, in the �rst case,either have no meaning or a trivial answer. One of themis the following: what is the probability that an incom-ing particle is scattered more than a given angle? In the�rst case, the answer is trivially zero: the balloons do notscatter the bullets shot at them.To instead answer this question in the second case, wecan start considering one particle, moving toward one ofthe �xed bodies, on a straight line, at a distance b fromthe axis of the body (b is called impact parameter). Welimit our analysis to elastic scattering, so that the par-ticle will be deected according to the reection laws:the trajectory of incidence, the perpendicular to the re-ecting surface at the impact point and the trajectory ofreection all lie in the same plane and the incidence angleis equal to the reection angle. Lets call � the scatter-ing angle, that is the angle of deviation from the initialtrajectory caused by the collision; see �gure 3.One can see that if the target is convex (the secondderivative of the generating curve is stricly positive), thenthe smaller the impact parameter b the larger is the scat-tering angle �. That means that the particles striking a

disc of area �b2, perpendicular to their velocity, will suf-fer an angle of scattering greater than �; see again �gure3. We can now answer our question by saying that theprobability that an incoming particle is scattered throughan angle greater than � is:P (�) = nh�b2 (2)In other words and keeping in mind equation (1), itcan be said that the cross-section for scattering throughan angle greater than � is:�(�) = �b2 (3)We observe that equation (3) is not \fundamental" inthat it relates the cross-section to the impact parameterb which, in a scattering experiment, where the positionsof the individual targets are not known, is not a measur-able quantity. Nonetheless this equation will be of greatimportance for the next considerations.We now further re�ne the question to: what is theprobability that a particle is scattered through an anglebetween � and �+ d�?The particles scattered, through an angle between �and �+ d�, are given by those ones deected through anangle greater than � minus those particles deected morethan � + d�. These are the particles that hit the �xedbody on a cross surface of area jd�j = �(�)� �(�+ d�);the required probability is then:P� = nhjd�j (4)After the scattering, these particles are contained intoa solid angle of amplitude d
 given by the ratio betweenthe area of the spherical zone Z, of �gure 4, and r2, thatis: d
 = 2�(r sin�)rd�r2 = 2� sin�d� (5)and therefore the probability that a single particle isscattered around the angle �, per unit solid angle, is:P� = nh jd�jd
 (6)Equation (6) is of general interest and its valid for allscattering experiments in the thin target hypothesis.The fundamental quantity jd�j=d
 is called the di�er-ential cross-section. To better understand its physicalmeaning we can extend our description of the experi-ment to include the detection process. Consider a parti-cle beam shot against a �xed target and an ideal particledetector of e�ective section A, located at an angle � ata distance R from the target and perpendicular to thescattered particles. In this way it detects all the parti-cles in the solid angle of amplitude 
 � A=R2. If 
 issu�ciently small, P� can be considered to be constantover the surface A, and the ratio between the number ofdetected particles and the number of incident particles isgiven by P� multiplied by 
 which is:2



P�;
 = nh jd�jd
 AR2 (7)Equation (7) shows a clear way of calculating the dif-ferential cross-section from given experimental measuresand a comparison between (6) and (7) helps students en-lighten the conceptual meaning of this useful quantity.However it should be noted that, even if we have fo-cused our attention to (7), jd�j=d
 is not the fundamen-tal quantity for every scattering process, for instance inthe case of inelastic scattering the relevant quantity isd2�d
dE (8)(where E is the energy of the scattered particle), that isthe cross-section per unit solid angle and per unit energy.IV. DETAILED CALCULATIONWe state in advance that, at a �rst reading, the fol-lowing analysis might seem a little bit formal and that,during classroom lessons, High-School students shouldbe warned not to get discouraged. In fact, at the end ofthe following calculations, students will soon be able todeal with many di�erent scattering problems with justa \touch" of guide by their teacher. In this way theircomprehension of cross-section will grow rapidly deeper.Let's consider the rigid solid produced by the completerotation around the y axis of the increasing convex func-tion y = f(x) with x between 0 and a; �gure 3. Our aimis to calculate the total and di�erential cross-sections forthe elastic scattering of point-like particles, that are shot,in the direction of the y axis, against this �xed solid. Thetotal cross-section is calculated straightforwardly as:�T = �a2 (9)For what concerns the di�erential cross-section wemake reference to �gure 3.Since the incident line, the perpendicular to the surfaceand the line of reection lie all on the same plane, theproblem can be considered in the x� y plane. Let b bethe impact parameter, t the tangent to the curve in thecollision point, p the perpendicular, j the line of incidenceand d the line of reection. Now c is orthogonal to thex axis and p is orthogonal to t, therefore the angle �,between t and the x axis, is equal to the angle î betweenj and r, that is the incidence angle.It follows that:g(b) � dfdx����x=b = tan� = tan î = tan�� � �2 � = cot �2(10)We are now able to obtain the di�erential cross-section.The principal steps are the following:

I.Solve equation (10) with respect to b (with the geo-metric limitation 0 � b � a).In formulae, de�ning the inverse function g�1through the equation g�1(g(x)) = x:( b(�) = g�1 �cot �2�� � 2 arctan(g(a)) � � � � � 2 arctan(g(0)) (11)II.Calculate �(�) = �b2.III.Di�erentiate �(�) to obtain jd�(�)j.IV.Divide the found expression by d
 given by eq.(5).V. THREE EXAMPLES1) Let's consider the ellipsoid obtained by the rotation,around the y axis, of the functionf(x) = �cr1� �xa�2; 0 � x � a; (12)with a and c the two semiaxes of the generating ellipse1.Its derivative is:g(b) � dfdx����x=b = cxa2 1q1� �xa �2 : (13)Therefore from step I, equation (11), we get8<: b2 = a2 cot2(�2 )c2a2+cot2(�2 )0 � � � � (14)and then (steps II., III., and IV.):jd�(�)jd
 = a24 0@ acc2 sin2 ��2�+ a2 cos2 ��2�1A2 : (15)A simple change of signs in eq. (12) gives us the equa-tion of a hyperboloid:f(x) = cr1 + �x~a�2; 0 � x � a; (16)which results in the cross-section8><>: jd�(�)jd
 = ~a24 � ~acc2 sin2(�2 )�~a2 cos2(�2 )�2 :� � 2 arctan� ca~a 1pe2+a2� � � � � (17)where, as the curve (16) is not bound in x, we had to dis-tinguish between the target size parameter a (introducedas to avoid an in�nite total cross-section) and the curvepatrameter ~a.For c = a eq. (15) reduces the well known expressionof the di�erential cross-section of a rigid sphere2, which3



depends only on the sphere radius a, which is a con-stant, but is independent of �. This means that after thecollision with a sphere the particles are isotropically scat-tered, that is they are deected to every angle with equalprobability. This result depends on the particular inter-action here considered. If in a scattering experiment, inwhich we dont know the nature and composition of thetarget, we get results (fraction of particles revealed atcertain angles) that are independent both from the scat-tering angle and from other physical quantities such as,for example, the kinetic energy of the incident particlesor their electric charge, from which they could a prioridepend, we have strong indications that the interactionbetween particles and target is a hard-core one (elasticcollision with the surface of the individual target) andthat the target is \made of" rigid spheres.Its worth noting that from the obvious relations:Zall directions d
 = 4�; Z d�d
d
 = �T ; (18)and from equation (15), one gets immediately the triv-ial result (equation (9)) �T = �a2. This can be a usefulcheck for most students.2)Let us consider the solid obtained by the rotation ofthe curve3f(x) = x2c ; 0 � x � a: (19)Then, reminding equation (9), we have that the totalcross section again is:�T = �a2: (20)For the di�erential cross-section we again start withthe derivative of f(x) in b:g(b) � dfdx����x=b = 2bc : (21)From step I. (equation (11)) we then get:( b = c2 cot��2�� � 2 arctan �2ac � � � � � (22)and from step II.:�(�) = �b2 = �c24 cot2��2� : (23)then (step III.):jd�j = �������c24 2 cot��2� �1sin2 ��2� 12d������� = �c24 cos ��2�sin3 ��2�d�:(24)and �nally, dividing (24) by (5), (step IV.):

jd�jd
 = �c24 cos��2� d�sin3 ��2� 12� sin�d� = c216cosec4 ��2� :(25)This result shows some similarities with the Rutherfordcross-section4;5:jd�Rjd
 = K216 cosec4 ��2� ; K = zZe24��0K0 (26)where Ze is the target charge, ze and K0 are the chargeand kinetic energy of the incident particle and �0 is thevacuum permeability. Clearly, the same angular depen-dence appears; moreover, both of the cross sections arenot valid for small angles, but for very di�erent reasons:in the present case because of the discontinuity of f(x)in x = a, and in the Rutherford case because when theimpact parameter is large so is the distance of closestapproach to the nucleus and the shielding e�ect of theatoms' elecronic cloud is no more negligible. How can wethen distinguish the two cases? First of all, the di�eren-tial cross-section given by eq. (25) shows no dependencefrom the kinetic energy of the incident particles (the vari-able in the Rutherford experiment which can be mosteasily changed); moreover eq. (25) is only valid when theincidence direction is that of the symmetry axis of theindividual targets; a rotation of the target with respectto the incident beam would result in a di�erent result.3)Let's �nally consider the surface obtained by the ro-tation, around the y axis, of the functionf(x) = ec arcsin xa ; 0 � x � a: (27)Its derivative readsg(b) � dfdx����x=b = eca 1q1� �xa �2 : (28)Therefore from step I, equation (11), we get8<: b2 = a2 � ec 2 tan2 ��2�0 � � � � � 2 arctan�eca� (29)then (step II. and III.):jd�j = �������ec 22 tan��2� 1cos2 ��2� 12d������� = �ec 22 sin�cos4 ��2�d�:(30)and �nally, dividing (30) by (5), (step IV.):jd�jd
 = ec 24 1cos4 ��2� = ec 24 sec4 ��2� ; (31)4



which is a mirror image of our previous example eq. (25),obtained by the substitutions �! ��� and c! 2ec. Thetransformation between the two ranges in � follows thesame simple rule, as for � 2 (0; �=2),�2 � arctan� = arctan� 1�� : (32)VI. DISCUSSIONThe concept of cross-section in the case of hard-corescattering has been introduced on the basis only of sim-ple statistic and geometric considerations. This choicehas been made because of didactic reasons: with this ap-proach, the intuition is helped both by the \material"existence of the cross-sections both total and di�erential(which are real parts of the rigid surface of the body) andby the existence of the trajectories of the particles.In physically more signi�cant cases, as e. g. theRutherford scattering itself, the interaction is betweenthe incoming particle and the force �eld of the target.It is true that in these cases the total cross-section canbe geometrically conceived as the \e�ective surface" pre-sented by the target force �eld to the incoming particlesand the di�erential cross section as the \part" of that\surface" scattering the particles in a given direction,but this only in an abstract sense, which usually is noteasy for the students to grasp: for example, even in thesimple geometrical case of particles randomly scatteredby a rough surface, the di�erential cross section, even ifmathematically de�ned, cannot be associated with anygeometrically de�nite part of the scattering surface.Besides this di�culty, the general approach, in whichthe scattering is introduced from the beginning in its ab-stract meaning, often allows students only to discuss ex-isting experimental data, thus missing important rela-tions and theoretical considerations, an understanding ofwhich can be gained by the direct calculation of severalsimple cross-sections.The approach we propose can moreover be easilyadapted with only minor changes to the case of lightbeams of suitable wavelength being reected accordingto the rules of geometrical optics by the targets' surfaces,thus smoothing the transition to the Quantum Mechan-ical treament where the concept of trajectory of a point-like particle must be abandoned. In this case the di�er-ential cross section jd�j=d
 is de�ned by the equationdPd
 = dPdS jd�jd
 (33)where the functions dP=dS and dP=d
 are the incom-ing energy ux per unit surface (which is convenient toassume constant) and the scattered energy ux per unitsold angle respectively.

VII. CONCLUSIONSIn brief, this paper gives a simple formula to calcu-late with little e�ort many di�erent cross-sections, threeof which are explicitely given (in the case of a rigid el-lipsoid, in that of a rigid paraboloid, and in that of thesolid generated by the rotation of an inverse sine curve).The formula itself is of limited utility because of the verysimple interaction taken into account but, at the intro-ductory level, it can help students understand the linkbetween experiments and theoretical explanations.An extended case study, about the students' under-standing of the cross-section concept at High-Schoollevel, following the ideas outlined in the present paper, isunder way and will be presented in a forthcoming paper.Only preliminary results are currently available, relatingto a previous study on the same subject, when the al-gorithm outlined above was �rst tried on (18 year old)last year High-school students of an Italian \Liceo Scien-ti�co", whose curriculum includes simple calculus.Before presenting those results we should point outthat on that occasion the students were �rst presentedwith the Rutherford scattering, where it has no sense tointroduce the concept of total cross section (as it is in�-nite if the electronic cloud is neglected), and only after-wards both the algorithm and the concept of total crosssection were introduced, but only in the case of elasticscattering o� rigid spheres, which is isotropic.The drawbacks of that approach were evident from thetest presented to the students, and prompted the revisedapproch otlined here.Among other questions, the students were asked to cal-culate the total and partial cross sections and the mini-mum deection angle for a target composed of solids ob-tained by the rotation, around the y axis, of the function6f(x) = x3; 0 � x � 1: (34)Out of 12 students, only one correctly answered thequestion about the minimum deection angle, suggest-ing the need for elastic scattering examples more generalthan the rigid spheres one: there, the minimum deec-tion angle is zero and in the only other example given tothe students, namely the Rutherford scattering, it arisesonly from limitations of the model used.Only three students correctly answered the calculation-ally simple �rst question about the total cross section,and four thought it to be a function of the deectionangle. This suggests a confusion between �(�) and �Twhich could be avoided by some more examples of �nitetotal cross sections.Most students on the other hand directly tackled thecalculation of the partial cross section, 8 correctly reach-ing step II. and 6 completing the calculation, a ratherencouraging result.5
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FIG. 1. A lunatic shoots some bullets against some toyballoons contained into a cylinder of base surface S and heighth. If �T is the section shown by each toy balloon to thebullets, the probability that a bullet strikes a toy balloon isP = nh�T , where n is the density of the layer of toy balloons.
 

σT FIG. 2. A collimated beam of point-like particles is shotagainst a thin target of hard solids, each one of totalcross-section �T , �xed at some points of the space. Most ofthe particles will be undeected but some of them will su�era collision.
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0FIG. 3. A sharp-edged solid is given by the complete ro-tation around the y axis of the increasing convex functiony = f(x) with x between 0 and a. A point-like particle, mov-ing in the y-direction, is scattered by the solid through theangle �: b is the impact parameter, t the tangent and p theperpendicular to the solid at the collision point, c and d arerespectively the line of incidence and the line of reection.
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Z FIG. 4. The particles scattered between � and �+ d� arecontained into a solid angle of amplitude given by the ratiobetween the area 2�r2 sin �d�, of the spherical zone Z, andr2.
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