Direct current photoexcitation: Could it be relevant for QWIPs?
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We examine the possibility of direct current photoexcitation (DCPE) across a semiconductor
heterostructure. After reviewing the quantum-mechanical limitations on the elementary processes
imposed by T-invariance and the canonical commutation rules, we use inverse methods to generate
some encouraging examples, whose DCPE rates are close to the obtained bounds. July 10, 2001

The current generation quantum well infrared pho-
todetectors (QWIPs) are based on photoexcitation of
carriers from a quantum well of some shape, followed
by their thermalization and transport across the device
by an applied external bias field. The main parasitic ef-
fect limiting their sensitivity is the dark current, which
is significantly increased by the applied bias field. Pho-
tovoltaic detectors, with non-zero response at zero bias,
have also been considered [1]. These work on an essen-
tially three level asymmetric scheme. At equilibriumn in
the dark, only the first (ground) state is populated. A
second excited state is longer lived than the photoex-
cited third, which decays (mostly nonradiatively).Some
fraction of the photoexcited carriers gets trapped in the
second, wherefrom it can be extracted by a smaller bias
field. Alternatively, the nonzero dipole moment of the re-
sulting nonequilibrium steady state generates a potential
difference across the device. In both cases the device’s
response depends on difficultly controllable ratios of life
and relaxation times. To our knowledge, no attempts
have been made to explore the possibility of generating
a strong photocurrent in an asymmetric system of quan-
tum wells at zero bias by direct photoezcitation of the
current carrying states.

We will consider a simple model for the conduction
electron dynamics in the semiconductor heterostructure:
the potential depends only on one coordinate (z). Then,
the transverse motion (in planes perpendicular to the
growth direction) degrees of freedom separate. The lon-
gitudinal part of the electron’s wave function satisfies the
(constant) effective mass Schrodinger equation (2]
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The spectrum of (1) with potentials which are fast
decaying at infinity consists of the continuum (E =
h2k%/2m > 0, with k > 0) and the (possibly empty)
set, of negative eigenvalues. The scattering matrix
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connects the in states (asymptotically ingoing plane
waves, eP'** near = Foo) with the out ones (behav-
ing like e*'** near z = +o00). Here T(k) and R (k) are
the complex transmission and reflection to the right/left
coefficients. [3]

Since the potential in (1) is real, the eigenfunctions ass-
cociated to the (non-degenerate) eigenvalues are always
real (apart for an irrelevant global phase) and cannot
carry a current. The scattering states in the continuum
are doubly degenerate, and their "wave functions” can
be chosen current carrying, (z|+,k) = ¢4 (z; k), like the
plane waves in the absence of a potential. Their asymp-
totic behavior at oo is
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The states (3)-(4) are normalized was chosen in the
wavenumber scale [4],
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The (one-dimensional) current density of the state
|£, k) is ji(k) = Ze|T(k)]*hk/2rm. This is |T(k)|?
times smaller than the one of a plane wave with the same
wavenumber.

The left/right currents carried by the |+, k) states with
k in an interval of width 26k around ko are
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Here A is the area of the device, Ny are the surface
densities of right/left moving electrons in the interval,
Ey = h%k%/2m, SE is the halfwidth of the interval in the
energy scale, T(E) = |T(k)|? is the transmittance, and
{ }g, denoctes averaging on the interval.

The values of the currents appearing in (6) can be quite
respectable. Indeed, taking an average surface density of
{N:T}g, = 10%m™? and a width 26E = 10meV we
obtain about 100A4¢m 2. The total current is zero if the
surface densities are equal, Ny = N_, as in the case
of a symmetric well. On the other hand, if the surface
densities of left/right moving electrons are different, the
currents no longer compensate.

Consider a quantum well/barrier system of some yet
unprecised shape, having only one bound state with en-
ergy By, = —h2x%/2m, doped to a surface density N;.
The length of the structure should not exceeed £ - the
mean free path of the electrons (say 1000A), so that the
movement across it can be considered ballistic. The elec-
trons are photoexcited by photons of energy fw (wave-
length A = 2m¢/wy/€) polarized along the growth direc-
tion. The intensity of the photon field can be character-
ized by Nys — the number of fertile photons in a cube
of size A [5],

Let 7; be the lifetime of the final photoexcited states in
an interval of width 26k around k, = /2mw/h — k% by
all processes excepting direct radiative recombination to
the bound state. Assuming a steady state, the numbers
of right/left moving photoelectrons are
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Here, v(k,) is the velocity of electrons with wavenumber
ky, and (+,k|z|b) are the bound-to-continuum dipole
matrix elements. We neglected the thermal ionization
of the electrons bound by the heterostructure, assumed
N, > Ng, and that the lifetime and the energy width
0E = W2k, 0k/m satisfy idE > h.

Being real, the bound states of (1) are invariant un-
der time-reversal, while the continuum ones change into
their complex conjugates, ¢+ (z; —k). Since (1) is a sec-
ond order linear differential equation, it has only two
linearly independent solutions. Thus, the four solutions
¢+ (z; £k) satisfy 2 relations which can be written as [6]

T(—k)p+(z; k) = ¢ (z; —k) — Re.(—k)o=(z; k).  (8)
Multiplying the complex conjugate of the upper sign eq.
(8) by z¢p(z) and integrating with respect to z, we ob-
tain
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where we set My(k) = (&, k|z|b), and omitted the k
dependences.

Apparently, we have four homogeneous linear con-
straints for four unknowns (the real and imaginary parts
of M. ): the complex eq. (9), and the one obtained by re-
versing all the signs in the indices. But only two of them
are independent. Indeed, the latter relation becomes an
identity if we substitute the real and imaginary parts of
M from (9) into it. Thus, there are only two indepen-
dent constraints on the phases and the absolute values of
the matrix elements M.:
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Here, the phases x+ = arg(Mx)—1 arg(R=), |R| = |R+/,
and we used egs. (21)-(23) of Ref. [3].

A glance at (10) tells us that the excitation is sym-
metric at full trasmission resonances (|R| = 0), even for
non-symimetric potentials. The asymmetry will be quite
small for [R| < 1. In the other limiting case, |[R| — 1, the
asymmetry could be quite large, depending on whether
one or both the arguments of the tangents in (11) ap-
proaches zero (mod 7). Nevertheless, the carried current
will be small, since the current density is proportional to
the transmittance, |T'|2.

In the latter case, the photoexcited electrons will be
localized mostly to one side of the device, but their
chance of tunneling through the before thermalization
and recombination in the well is small. A nonequilib-
rium charge distribution with a non-zero electric dipolar
moment can be generated, inducing a voltage difference
across the device, which will act as a bound-to-continuum
photovoltaic detector. Here, we will not pursue this fur-
ther, but will concentrate on direct current photoexcita-
tion (DCPE).

Assuming that the argument of the cosine in (10) can
attain the optimal value (2x_ = =), we find that the
maximum asymimetry that can be achieved by photoex-
citation is bounded by

|M4|? = [M_[* <R (IMy)* + |M_) . (12)

At intermediate values of |R]|, the total photoexcited cur-

rent might be a significant fraction of the values predicted
by (6).

Substituting (7) into (6) and subtracting, the directly

photoexcited current across the plane of the structure is
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where we set
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and assumed that the difference of the matrix elements
is slowly varying on the interval.
Substituting the bound (12) into (13), we get
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Here, we used the f-sum rule,
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to estimate from above the integral in (15).

To get results close to the estimate (15) the error we
make by extending the integral to (0, +00) must be mini-
mal. This means that a) The reflectance |R(k,)|? =~ 1/3,
which maximizes the product |RT?|; b) The f-sum rule
must be close to saturation on the inteval (k, — ok, k,, +
ok).

Having failed to detect strong limitations imposed by
the basic laws of quantum mechanics on direct current
photoexcitation (DCPE), the next question is if poten-
tials with such rates of DCPE exist, and whether they
are realisable as heterostructures. We will employ inverse
scattering techniques towards this end.

It is well known (see e.g. [6]) that in the absence of
bound states, the inverse scattering problem for poten-
tials which decay sufficiently fast at infinity has an unique
solution. On the other hand, if n > 1 bound states are
present, there is an infinite (n-parameter) set of isospec-
tral potentials (having the same S-matrix).

The construction of one-parameter subsets of the
isospectral manifold is particularly simple using the so-
called double Darboux transformation [7]. Let Ey , and
¢p(2) be an eigenvalue and the corresponding normal-
ized bound state of (1). Then, the family of Schrédinger
equations with potentials
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is isospectral for any value of the deformation parameter
—00 < T < +00. One can readily check by direct substi-
tution that for any E # Fy, and ¥g(z) a solution of (1),
the function
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satisfies (1) with the potential U.. Since ¢p(z) decays
exponentially at infinity, the the leading order asymp-
totic behavior at infinity of the transforms of bounded so-
lutions (continuous spectrum) is unchanged after renor-
malization by the 7 independent constant Ey, — E. This

ensures the coincidence of the S-matrices. Finally, the
normalized bound state at energy Ey,, which has no pre-
cursor among the solutions of (1), is

do(a) = o) (20)

Taking a simple possible realistic example, a square
well having only one bound level, we searched for the
isospectral deformation which maximizes the DCPE. The
wavenumber k,, of the final state was chosen such as to
maximize [T2(k,)R(k.)|-
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