CHAOS AND QUANTUM DYNAMICS OF SIMPLE MODELS

Giulio Casati
Dipartimento di Ficica dell’Universita,Via Celoria, 16-20133 Mllano, Italy

Italo Guarneri
Dipartimento di Fisica Teorica e Nucleare dell’Universita, Favia, Italy

Luca Perotti
Dipartimento di Fisica Dell’Universita, Via Celoria, 16-20133 Milano,ltaly

Abstract

We discuss the manifestations of classical chaotic behaviour in
quantum mechanics. We show that, typically, quantum mechanics
introduces strong limitations to chaotic motion. In particular we discuss
the problem of excitation and ionization of an hydrogen atom under a
monochromatic, linearly polarized, electric field and predict new resuits
which can be tested in laboratory experiments.
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Chaos in classical Hamiltonian systems is today a widely studied
subject. It 1s connected with the appearance of strong local instability
of ormts, which 12ads to a rapid loss of memory and calls for statistical
description [1]. Mation in the chaotic regirme exhibits truly stochastic
features and is unpredictable in a well defined sense. For thiz redson,
chaos is often referred to as “self-generated stochasticity”, in order to
stress that unpredictability, and other stochastic features, are not due
to the introduction of external random disturbances intg the systerm.

In particular, seif-generated stochasticity is a very common
occurrence in  Hamiltonian systems subject to time-periodic
perturbations; indeed, in macroscopic systems of this type, chaos is
directly responsible for easily observable, and often undesirable effects.

In this paper we will be concerned with the problem, whether any such
effect survive in Quantum Mechanics also. This is a very important
question, as we shall now explain.

Atoms and molecules in external electramagnetic fields are often
described by time-periodic Hamiltonians, and, upon investigating the
Classical mechanics of these models, one often realizes that, for
surficiently high fields, a transition to chaos occurs. Then, an unlimited
diffusion in phase space takes place, eventually leading to ionization of
atoms or to dissociation of molecules; this classical mechanism of
ionization/dissociation is alss a very efficient one.

On the other hand, quantum mechanics is the appropriate description
for microphysical systems such as atorns or molecules. Therefaore, the
question about persistence of chactic or at least diffusive effects in
quantum dynamics is a crucial one, whose answer affects the actual
phenomenology of atoms and molecules in external electromagnetic
fields.

An integrable Hamiltonian system subject to an external perindic
perturbation is described by an Hamiltonian

HCL, 9, t) = Ho(D) + € v(1, P, t) (1
where VI, 9, t) is periodic in ¥ and t with periods Zn and T
respectively, and 1, ¥ are action-angle variables tor the unperturbed -
system described by the Hamiltonian H,.

Ag specific examples, we will congider-the “S-kicked ratator [2]):

HL, P, t) = 12/2 + ¢ cosP T, 6 (t-nT) (2)



and the one-dimensional madel for a hydrogen atom in a monochramatic
electric field(3}):

HUL P, t) = - 17212 + e w(1,P) cos wt; = 21/T: % >0. (2)

Here, x (I, P) is the x coordinate of the electron, expressed as a function
of action-angle variables of the unperturbed atom.

Model (3) has a direct physical relevance, in that it can be used to
study the effect of a microwave field on a hydrogen atom initially
prepared in an ‘extended” state. The use of the one-dimensional
approximation (3) proves thecretically and experimentally justified for
such initial states [3].

Instead, model (2) has no such immediate physical meaning.
Nevertheless, it is a particularly convenient one in order to analyze the
transition to chaos; indeed, by studying this model, an insight on the
effect of quantization on dynamical chaos was gotten, which proved very
useful for model (3) also.

Both classical systems (2) and (3) exhibit a transition to chaos when
the coupling parameter e exceeds some “stochasticity threshold”, that
can be estimated by means of Chirikev’s resonance overlapping
criterion(4] .

For model (2), this transition occurs for

€T > 1 (4)

Above this threshold, motion is more conveniently described in
statistical terms. 3pecifically, considering an ensemble of trajectories
leaving with a fixed value I of the action and with randomly distributed

phases ¢, one finds that the distribution function f(I, t) in action space _
is well approximated by the solutidn of the Fokker- Planck equation:

Af(l, )73t = 172 D A2f{1,t)/312

with D % €2/2T and with the initial condition f(1,0) = &(1-1). ,
In particular, the ratator kinetic energy increases linearly with time,

according to the law XI¢ =~ Dt.
For model (3), trajectories leaving from initial states with I=n,

undergo a stochastic transition for(5]



i /3, . 3 .
L R l:’LSLJwO"“_J: Eg = eno'*; Wy =g . (3]

The motion in the stochastic regime can again be described by 3
Fokker-Flanck equation:
91/8t=1/2 3701 (D(Dar/31 ) . (5)

Here the diffusion coefficient D(I) depends on the action I:
D(D) = n7'el3w™3, A quite remarkable feature of the diffusion ruled by
2q.(6) is that the moment <I>=[If{l, t)dI grows to infinity -i.e., the atom
fonizes - in a finite time t, » 2w¥3/(e2n; ).

Let’s now quantize models (2) and (3). In both cases we get
Schroedinger equations of type

i QP/dt=Hy ¥ + ¢ V()Y (7)

with V(t) an operator depending periodically on time.

A particularly convenient way to study equations of this type is
introducing the Floquet operator S =U(0,T) where U(s,s+t) is the unitary
operator which gives the evolution of states ¢ aver the time t according
to $(tse) = Uls,s+t)P(s). Indeed, in order to analyze the long-time
behaviour of the solutions of eq.(?), it is sufficient to study the iterates
5" of this Floquet operator(6).

A first qualitative classification of various types of behaviour that
solutions of (7) can show is provided by the nature of the quasi-energy
spectrum, which is by definition the spectrum of the seif-adjoint
operator G such that § = exp(iG). As a matter of fact, in both models (2)
and (3) the unperturbed Hamiltonian H, possesses a discrete spectral
tomponent, and one is interested in the time evolution of states initially
coinciding with some unperturbed eigenstate. Then, it can be shown(f]
that a continuocus quasi-energy spectrurm would enforce an indefinite
spreading of such wave packets aver the unperturbed spectrum. Instead,
a pure point quasi-energy spectrum weuld be associated with a recurrent
behaviour of the wave packets.

In the rotator case (model (2)) it was found that the nature of the
quasi-energy spectrum depends in a sensitive way an the value of the
period T. If T i3 a rational multiple of 4m, then the spectrum of the
Floquet operator 3 possesses an (absolutely) continuous compunent,



which causes the spread of the wave packet over the unperturted
eigenstates <n?> (which in this case is propartional ta the kinetic
enerqy af the rotator) to increase with time according to an asymptotic
tZ law. This phenomenon is known as quantum resonance and cannat be
understood in classical terms; its appearance in model (2) is due to the
particular nature of the unperturbed spectrum of this model[7].

When T/41 is irrational, nurnerical experiments provide evidence that,
in most cases, the quasi-energy spectrum is pure point. Far from
spreading indefinitely, the wave packet remains localized in momenturm
space. Thus, even in the semiclassical regime (e>>1,T<<1|) and for such
parameter values that the classical rotator is chaotic (eT>>1) the
quantum rotator does not reproduce the classical diffusive increase of
<n¢>, except for a more or less extended, but anyway finite, time scale
tg, after which <n?> enters a seemingly steady-state oscillatory regime.

However, even though localization seems to be a fairly typical

nccurrence for irrational T/4m, we were able to prove(8] that a dense
set of irrational T/4m values exists, yielding a continuous quasi-energy
spectrum. It is not yet clear whether thic continucus nonresonant
spectrum has any physical relevance, nor it is clear whether it is
possible to observe it also in different models where the unperturbed
spectrum is pure point.
On account of numerical and theoretical analysis, these values of the
periog look somewhat exceptional. Therefore, despite the intriguing
character of the spectral problem, our basic question about the
persistence of chaos in quanturn mechanics must be answered in the
negative for model (2). The typical picture for the quantum rotator in the
classically chaotic regime is the following: wave packets initially
concentrated on a3 single unperturbed eigenstate start spreading in
margenturn  space, but after a certain “dreak-fimé te  quantum
interference effects become dominant, which prevent further spreading.
Then, the average number of unperturbed eigenst-étes significaﬁtlg
excited by the wrave packet evalution, setttles to a stationary value, -
which is called localization 1enqth and provides also a measurs for the
number of unperturbed eigenstates significantly excited by cne single
quasi-energy eigenstate. - )

In the semiclassical reqion a simple estimate can be given for bath
the localization length and the break time. ‘we now sketch this
estimation since the idea behind it is basic also to our present
understanding of the quantum model (3).




Before the time tg , the spread An of the wave packet aver the
unperturbed levels (quantized actions I = n) will grow in time, follawing
to some extent the law An=An(t) that is predicted by the Fokker Planck
equation that rules classical diffusion. However, this diffusive growth
will stop, because the discrete character of the quasi-energy spectrurn
will eventually become manifest; the time t8 necessary for this can be
assurned to be ty ~ «N, with « a constant and N the number of gq.e.
2i1genstates  significantly excited by the siﬁgle initial unperturbed
eigenstate. In fact, 211/N is just the average spacing of g.e. eigenvaiues
gignificantly contributing in the wave packet evolution. Then we can
reasonably assume that N also measures the number of unpertubed
eigenstates spanned by a single q.e. eigenstate, i.2., N~1 (the localization

length). On the other hand, the latter coincides in order of magnitude
with An(tg); thus we get an equation for tg

oAn(ty) = tg

In the rotator case, classical diffusion obeys (An(t))? ~ Dt, whence it
follows that tg ~2D. Numerical experiments support very well this

estimate, provided that the value « =1 is chosen.

Mow we come to the hydrogen atom model (3). Here the question about
the nature of the quasi-energy spectrum is clearer; indeed, it is known
that the q.e. spectrum is absolutely continuous[10]. This means that,
unlike the classical atom, the quantum atom will eventually ionize, no
matter how small €. The corresponding ionization mechanism, however,
at least for small ¢ has nothing to do with the classical chaotic
phenomenon, and involves very long time scales. From the mathematical
point of view, this entails that identifying the nature of the g.e.
spectrum is not enough for answering the question of the existence of
“quantum chaos”. Indeed, this question calls for the analysis of time
evolution of wave packets over the time scale in which quantum and
classical evolution may be expected to agree to some extent.

In the present case, the short time behaviour of the atom is dominated
by resonances (in the sense of scattering theory). In other words, the
q.e. spectrum is absclutely continuous, but there are poles of the
resalvent operator lying very close to the real axis(10]. For practical
purposes, it can still be assumed that the q.e. spectrum has 2 pure point
component, in which each level has a small width.



Therefore, we can expect that the same raechanism which leads fo
quantum localization of the classical dynamical chaos in the rotator case
will be working here, too. There is an essential difference, however;
indeed, if it is possible to choose such parameter values that the
quanturn An(t) follows the classical diffusion for a time larger than the
classical chaotic ionization time, then we may expect “diffusive’
jonization also in the guantum case. Conditions for this delocalization
phenomenon can be easily derived; in fact, the break time can be
estimated by the same procedure ocutlined abave for the rotator case -
the difference being that here the appropriate Fokker-Planck eguation {6}
must be used. In this way we find that delocalization will occur for(9]

o

g 2é €o 2 €= Wy 701 S (6ng) (8)

A remarkable fact is that in order to obtain the estimate (38) for the
Jgelocalization border, the parameter « was taken = 1 just like in the
rotator case. The good agreement of (8) with numerical results implies
that, however particular, the rotator model still retains features that
have some generality in problems about quantization of chaotic systems.

Like in the rotator case, the model (3} was the object of extensive
numerical investigations, which fully confirm the main result of the
above discussion{9). Mamely, three distinct quantum regimes can De-
observed according to the particular choice of €, wq and of the initial
state ny . If ¢p lies below both the classical stochasticity border €; and

the delocalization border €, , then both the classical and the quantum

model will exhibit localization in action space; this is the case of fig. 1,
where wg =1.5, ny =100, €,=.01 and where the quantum and classical
distributions over unperturbed actions are shown after 120 periods of
the external Tield. - -

If €5 lies 1n betyeen the thresholds ¢, and €q » WE observe-classical
chaotic motion and quantum localization; here the classical atam would
ionize diffusively, but the quantum one does nat. (Fig. 2: ng=100, wy =
1.5, € = .03 , distributions after 430 periods). In Fig. 3 we show the
comparisan of classical and quantum probability of excitation above
n=1.5 nqy , as functions of time. Quantum localization of classical chaos
ic here quite evident.

Finally, if ¢, exceeds both thresholds, we observe a qualitative
agreement between classical and quantum results {Fig. 4, ny =100, wq=
1.5, £y =.15). Here a quantum ionization mechanism is at waork, that



cannot be understood in termsz of standard perturbation theory. Indeed,
this mechanism is effective at much lower frequencies than those g 7
ny /2)-predicted by the pertubative theory ot the photoelectric efrect.

To summarize, 1or the model (3) of a I-dimensional hydragen atam in
4 microwave field it is possible to observe & memcry of the claszsical
chaotic motion, surviving in the guantum domain, which manifests in 3
diffusive mechanism of ionization of the atom. 3 _

On these grounds, we can predict a photoioniéatim effect pocuring at
much lower freguencies than usually expected, that should be obhservable
in actuatly feasible labaratory experiments.
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FIGURES CAPTION.

Fig.! Classical(-)and quanturn(-) distribution function T, averaged over
40 values of T=wt/(2n) within the interval 80 <tU< 120. Here wy=1.5,
€9=.01, ng=100. For these parameters value, both classical and quanturm
packets are localized. Notice the small quantur tunneling through the
classical Kalmogaroy invariant curves,

Fig.z Same as Fig. | but with ¢ =.03. The classical (-) and quantum
(-)distribution functions are averaged over 40 values of T within the
interval 440<v<480. In this case ¢, < €g <€, and the quantum packet is
localized as expected (besides a small resonant plateau).On the contrary,
the classical packet is strongly diffusing as it is also shown in Tig. 2.

Fig.3 Classical(1) and quantum(2} total probability Wi 1.50, above leve!
n=1.5ny for the case of fig.2. The classical ionization probability is
order of magnitudes higher than the quantum one(fig.3a). The comparisan
af the two ionization praobabilities for short times 1s shown in fig. b,

Fig.4 Same as fig.1 but with ¢,= .13. Here, the classical (=) and quanturn
(-) distribution functions are averaged over 40 values of T within the
interval O<t<40. In this case fp>#, and both classical and gquanturn
motion abey a diffusion law given by Fokker-Planck equation. The dotted
line gives the solution of the Fukker Planck equation. a
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