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N Two-level Atoms in a Two-mode Electromagnetic

Cavity. J. E. BAYFIELD AND L.C. PEROTTI, University
of Pittsburgh. --- The system of a large number N of
two-level atoms interacting with a self-consistent
nearly-resonant cavity mode classically can exhibit
~homoclinic chaos when a second, nonresonant cavity mode
is externally driven [1]. Recent progress on the fully
quantized problem indicates that near-classical evolution
ceases after an experimentally accessible quantum breaktime
proportional to In N [2]. We report numerical results for a
classical model that includes the dissipation and parameter
averaging present in a real experiment. The single-orbit
Lyapunov exponent remains positive and the early
near-classical orbit ensemble evolution should be
observable.
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N Two-level Atoms
in a Two-mode
Electromagnetic Cavity

James E. Bayfield and Luca C. Perotti,
Department of Physics and Astronomy,
University of Pittsburgh

An ensemble of N two-level Rydberg atoms is placed in a microwave cavity
resonant at frequency o with the atoms' level separation. In addition, an externally
applied microwave field is present in resonance with a second cavity mode. The
variables for the classical spin model for the collective evolution of the atoms
in

their common electromagnetic ﬁelds_’are the normalized mean value of the
ensemble angular momentum o(t)= J(t)/J and the complex self-consistent
electric field at frequency o:

E{t)+1iE'(t) [1].

The parameters in the problem are

1) the collective frequency o, = [2nnd’*w/h]"* where -dE is the atomic dipole-field

interaction at frequency ® and n is the atom density;

2) the frequency detuning A of the externally applied field away from ® ; and

3) the frequency w; of atom Rabi-flopping induced by the applied field.

If there are cavity energy losses, then a fourth parameter is the cavity field decay
time T, .

If we take the unit of time to be the collective period 2n/w_, then the five coupled
differential equations for the system's evolution in rotating wave approximation are



o= -2[Ect E'ot (020 ) cos( A o, + &) o, + (0 /20,) sin( A Vo, + &) 6 ]
o.=2[E + (020, cos( A t/w_ + &)]o,

o=2[E'+ (0g/20,) sin( A /o, + &)]o,

E=0,/2-E/QwTy)

E'=c,/2-E/Q20/T,)

where & is the external field phase at t = 0.

We are interested in the situation where

E(0) = E'(0) = 0. The other initial conditions can be parametrized as
c,(0) =cos 6,
c,(0) =sin 6, cos @,
6,(0) = sin 6, sin @,

We numerically integrate the differential equations using a forth order Runge-Kutta
routine, and compute the atom mean upper state population P (t) = [1 + c(t)]/2. The
results will follow below. \

Berman, Bulgakov and Holm (BBH) have considered this problem without the
dissipation, both classically and quantum mechanically [2]. After changes in
variables and the appropriate choice of surface of section, classically one can see
the separatrix in the integrable Dicke-model limit @, = 0, the weak homoclinic
chaos when op=®_<A, and the strong chaos when o~ ®, ~A:
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Figure 1. Surfaces of section for classical trajectories for the regular regime, o, =0
(top), weak chaos regime (middle) and strong chaos regime (bottom).



We are interested in the weak chaos, where 6, must be taken close to unity. There
BBH find a difference between the quantal and classical evolutions that grows
exponentially with time. They also find that the time t for a 1% difference roughly
varies as In(N):

|

Figure 2. The predicted dependence of the quantum breaktime T on In(N).

Our intention is to experimentally observe the near-classical quantum evolution
for t < 7, the quantum evolution for t > 1, and to compare these with classical
numerical calculations. We hope to verify the In(N) dependence.

An ensemble of Rydberg atoms would be used in a picosecond pulsed laser
pump-probe experiment. As the experiments will not be perfect, the measured P (t)
will be averaged over distributions of the parameters, such as 6,, ¢,, £, and @,. In
the following we take estimates of achievable distributions and show that the
averaging does not significantly blur the early near-classical orbit ensemble
evolution that should be observed for t < 1. We also show that while the dissipation
reduces the single-orbit Lyapunov exponent, the latter does remain positive and the
chaos persists. '

In our averaging over 6, we took the distribution to have the form

P(6))= (28,/8, )exp(- 4,7 6,)



The averaging over ¢, was uniform in [0, 2x), the averaging over £ was uniform
over [0, 2x) and the averaging over ®w, was uniform over a 6% range. The damping
time constant T, was taken to be 300 collective periods. The total number of orbits
included was 7500. Figure 3 shows the orbit-ensemble evolution in the regular
regime, with 6= 10(-6), oy/0_=2x10(-4) and A /o =4.5:
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Figure 3. Classical evolution in the damped Dicke-model regime.

In Figure 4 we show the evolutions for 6, = 2.6x10(-3), 0z / ®,=0.6,and A/ o,
having the three values 0.3, 1.0 and 4.5. The chaotic evolution is evident.
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Figure 4. Evolution in the strong chaos (left) to weak chaos (right) regime.
Collapses and revivals induced by field inhomogeneity dephasing and rephasing (the
spread in @, ) are seen in these evolutions.



The Lyapunov exponents characterize the stability of an individual trajectory
in the system's phase space, at least one of them being positive when the trajectory
is chaotic. They are defined as the long time limit of the Lyapunov functions. We
have computed these using the approach of Wolfe et al [3]. An initial infinitesimal
five-dimensional spherical volume in phase space becomes an evolving ellipsoid.
One computes the long term evolution of its principal axes by simultaneous
integration of the exact differential equations above and their linearized equations in
the tangent space. This permits probing the local "stretch” while avoiding the
effects of the global "fold" that together with stretch generates chaos in bound
systems. To reach long times without numerical overflows, one carries out repeated
Gram-Schmidt reorthonormalizations, which are axis orientation preserving.
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Figure 5. The procedure for computing Lyapunov exponents, sketched in one
dimension. :

Some results are shown in Figure 6 in three different regimes: A/ o, =1.5, Ty=;
Alw, =1.5,T,=300and A/ o0, =4.5, T,=300;in all three cases 6,= 2.6x10(-3)
and

0y /0, =0.6



Figure 6. Single trajectory evolutions (top) and evolution of the corresponding
Lyapunov characteristic functions (bottom) for strong chaos without damping (left),
strong chaos with damping (middle) , and weak chaos with damping (right).
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