# Fractional-Tikhonov regularization on graphs (applied to signal and image restoration)



by Davide Bianchi

Università degli Studi dell'Insubria Dip. di Scienze e Alta Tecnologia

23<sup>rd</sup> of May, 2018

# Our model problem



- *K* represents the blur and it is severely <u>ill-conditioned</u> (compact integral operator of the first kind);
- $y^{\delta}$  are known measured data (blurred and noisy image);

• 
$$\|\text{noise}\| \le \delta$$
.

### Singular value expansion and generalized inverse

Since K is compact, we can write

$$Kx = \sum_{m=1}^{+\infty} \sigma_m \langle x, v_m \rangle u_m,$$

where  $(\sigma_m; v_m, u_m)_{m \in \mathbb{N}}$  is the singular value expansion of K.

#### Generalized inverse

We define  $K^{\dagger}:\mathcal{D}(K^{\dagger})\subseteq\mathcal{Y}\rightarrow\mathcal{X}$  as

$$K^{\dagger}y = \sum_{m:\,\sigma_m>0} \sigma_m^{-1} \langle y, u_m \rangle v_m,$$

$$\mathcal{D}(K^{\dagger}) = \left\{ y \in \mathcal{Y} : \sum_{m: \sigma_m > 0} \sigma_m^{-2} |\langle y, u_m \rangle|^2 < \infty \right\}.$$

In the free-noise case, we have

$$x^{\dagger} = K^{\dagger}y,$$

but due to the ill-posedness of the problem,

$$x^{\delta} = K^{\dagger} y^{\delta}$$

is not a good approximation of  $x^{\dagger}$ . Since we are dealing with data affected by noise, i.e., with  $y^{\delta}$ , then we can not use  $K^{\dagger}$  to compute an approximated solution. We have to regularize the operator  $K^{\dagger}$ .

We substitute the  $K^{\dagger}$  operator with a one-parameter family of continuous linear operators  $\{R_{\alpha}\}_{\alpha \in (0,\alpha_0)}$ ,

$$K^{\dagger}y^{\delta} = \sum_{m:\,\sigma_m > 0} \sigma_m^{-1} \langle y^{\delta}, u_m \rangle v_m$$

∜

$$R_{\alpha}y^{\delta} = \sum_{m:\,\sigma_m > 0} F_{\alpha}(\sigma_m)\sigma_m^{-1} \langle y^{\delta}, u_m \rangle v_m$$

 $\alpha = \alpha(\delta, y^\delta)$  is called rule choice.

#### Fractional Tikhonov filter functions

• Standard Tikhonov filter:  $F_{\alpha}(\sigma_m) = \frac{\sigma_m^2}{\sigma_m^2 + \alpha}$ , with  $\alpha > 0$ .

- Fractional Tikhonov filter:  $F_{\alpha,\gamma}(\sigma_m) = \left(\frac{\sigma_m^2}{\sigma_m^2 + \alpha}\right)^{\gamma}$ , with  $\alpha > 0$  and  $\gamma \in [1/2, \infty)$  (Klann and Ramnlau, 2008).
- Weighted/Fractional Tikhonov filter:  $F_{\alpha,r}(\sigma_m) = \frac{\sigma_m^{r+1}}{\sigma_m^{r+1} + \alpha}$ , with  $\alpha > 0$  and  $r \in [0, +\infty)$  (Hochstenbach and Reichel, 2011).

For  $1/2 \le \gamma < 1$  and  $0 \le r < 1$ , fractional and weighted filters smooth the reconstructed solution less than standard Tikhonov.

### An easy 1d example of oversmoothing - part 1

Blur taken from  $Heat(n, \kappa)$  in Regtools,  $n = 100, \kappa = 1$  and 2% noise. True solution:

$$\mathbf{x}^{\dagger} : [0,1] \to \mathbb{R} \qquad \text{s.t.} \qquad \mathbf{x}^{\dagger}(t) = \begin{cases} 0 & \text{if } 0 \le t \le 0.5, \\ 1 & \text{if } 0.5 < t \le 1. \end{cases}$$



• Tikhonov:  $\underset{\mathbf{x}\in\mathbb{R}^n}{\operatorname{argmin}} \|K\mathbf{x}-\mathbf{y}\|_2^2 + \alpha \|\mathbf{x}\|_2^2$ 

- Tikhonov:  $\underset{\mathbf{x}\in\mathbb{R}^n}{\operatorname{argmin}} \|K\mathbf{x}-\mathbf{y}\|_2^2 + \alpha \|\mathbf{x}\|_2^2$
- F. Tikhonov:  $\underset{\mathbf{x}\in\mathbb{R}^n}{\operatorname{argmin}} \|K\mathbf{x}-\mathbf{y}\|_W^2 + \alpha \|\mathbf{x}\|_2^2$ , with  $W = (KK^*)^{\frac{r-1}{2}}$ .

- Tikhonov:  $\underset{\mathbf{x}\in\mathbb{R}^n}{\operatorname{argmin}} \|K\mathbf{x}-\mathbf{y}\|_2^2 + \alpha \|\mathbf{x}\|_2^2$
- F. Tikhonov:  $\underset{\mathbf{x}\in\mathbb{R}^n}{\operatorname{argmin}} \|K\mathbf{x}-\mathbf{y}\|_W^2 + \alpha \|\mathbf{x}\|_2^2$ , with  $W = (KK^*)^{\frac{r-1}{2}}$ .
- Generalized Tikhonov:  $\underset{\mathbf{x}\in\mathbb{R}^n}{\operatorname{argmin}} \|K\mathbf{x} \mathbf{y}\|_2^2 + \alpha \|L\mathbf{x}\|_2^2$ , with Lsemi-positive definite and  $\operatorname{ker}(L) \cap \operatorname{ker}(K) = \vec{0}$ .  $\operatorname{ker}(L)$  should 'approximate the features 'of  $\mathbf{x}^{\dagger}$ .

- Tikhonov:  $\underset{\mathbf{x}\in\mathbb{R}^n}{\operatorname{argmin}} \|K\mathbf{x}-\mathbf{y}\|_2^2 + \alpha \|\mathbf{x}\|_2^2$
- F. Tikhonov:  $\underset{\mathbf{x}\in\mathbb{R}^n}{\operatorname{argmin}} \|K\mathbf{x}-\mathbf{y}\|_W^2 + \alpha \|\mathbf{x}\|_2^2$ , with  $W = (KK^*)^{\frac{r-1}{2}}$ .
- Generalized Tikhonov:  $\underset{\mathbf{x}\in\mathbb{R}^n}{\operatorname{argmin}} \|K\mathbf{x} \mathbf{y}\|_2^2 + \alpha \|L\mathbf{x}\|_2^2$ , with Lsemi-positive definite and  $\operatorname{ker}(L) \cap \operatorname{ker}(K) = \vec{0}$ .  $\operatorname{ker}(L)$  should 'approximate the features 'of  $\mathbf{x}^{\dagger}$ .
- Generalized F. Tikhonov:  $\underset{\mathbf{x}\in\mathbb{R}^n}{\operatorname{argmin}} \|K\mathbf{x}-\mathbf{y}\|_W^2 + \alpha \|L\mathbf{x}\|_2^2$

#### Laplacian - Finite Difference approximation

Poisson (Sturm-Liouville) problem on [0, 1]:

$$\begin{cases} -\Delta \mathbf{x}(t) = \mathbf{f}(t) & t \in (0,1), \\ \alpha_1 \mathbf{x}(0) + \beta_1 \mathbf{x}'(0) = \gamma_1, \\ \alpha_2 \mathbf{x}(1) + \beta_2 \mathbf{x}'(1) = \gamma_2. \end{cases}$$

If we consider Dirichlet homogeneous boundary conditions  $(\mathbf{x}(0) = \mathbf{x}(1) = 0)$  and 3-point stencil FD approximation:

$$-\Delta \mathbf{x}(t) \approx \frac{-\mathbf{x}(t-h) + 2\mathbf{x}(t) - \mathbf{x}(t+h)}{h^2}, \quad h^2 = n^{-2},$$
$$L = \begin{bmatrix} 2 & -1 & 0 & \cdots \\ -1 & 2 & -1 & \cdots \\ & \ddots & \ddots & \ddots \\ & 0 & -1 & 2 \end{bmatrix} \quad \ker(L) = \vec{0}.$$

If we consider Neumann homogeneous boundary conditions  $(\mathbf{x}'(0) = \mathbf{x}'(1) = 0)$  and 3-point stencil FD approximation:

$$\begin{split} -\Delta \mathbf{x}(t) &\approx \frac{-\mathbf{x}(t-h) + 2\mathbf{x}(t) - \mathbf{x}(t+h)}{h^2}, \ h^2 = n^{-2}, \\ L &= \begin{bmatrix} 1 & -1 & 0 & \cdots \\ -1 & 2 & -1 & \cdots \\ & \ddots & \ddots & \ddots \\ & 0 & -1 & 1 \end{bmatrix} \qquad \ker(L) = \mathsf{Span}\{\vec{1}\}. \end{split}$$

. . .

### An easy 1d example of oversmoothing - part 2

Blur taken from  $Heat(n, \kappa)$  in Regtools,  $n = 100, \kappa = 1$  and 2% noise. True solution:

$$\mathbf{x}^{\dagger} : [0,1] \to \mathbb{R} \qquad \text{s.t.} \qquad \mathbf{x}^{\dagger}(t) = \begin{cases} 0 & \text{if } 0 \le t \le 0.5, \\ 1 & \text{if } 0.5 < t \le 1. \end{cases}$$



#### Graph Laplacian

- An image/signal x can be represented by a weighted undirected graph G = (V, E, w):
  - the nodes  $v_i \in V$  are the pixels of the image/signal and  $\mathbf{x}_i \geq 0$  is the color intensity of  $\mathbf{x}$  at  $v_i$ .
  - an edge  $e_{i,j} \in E \subseteq V \times V$  exists if the pixels  $v_i$  and  $v_j$  are connected, i.e.,  $v_i \sim v_j$ .
  - $\circ \ w: E \to \mathbb{R}$  is a similarity (positive) weight function,  $w(e_{i,j}) = w_{i,j}.$
- The graph Laplacian is defined as  $\Delta_w^{(n)} \mathbf{x}_i = \sum_{v_j \sim v_i} w_{i,j} (\mathbf{x}_i \mathbf{x}_j).$

#### Remark

$$\int_{([0,1],\mu)} \mathbf{x}''(t) \overline{\phi(t)} \, d\mu(t) = \int_{([0,1],\mu)} \mathbf{x}(t) \overline{\phi''(t)} \, d\mu(t)$$

### Graph Laplacian - Example

**Example**. In the 1d case, if we define

$$v_i \sim v_j \text{ iff } i = j+1 \text{ or } i = j-1, \qquad w_{i,j} = \begin{cases} 1 & \text{if } i \neq j, \\ 0 & \text{if } i = j, \end{cases}$$

.

then it holds

$$\Delta_w^{(n)} = \boldsymbol{L}_w^{(n)} = \begin{bmatrix} 1 & -1 & 0 & \cdots \\ -1 & 2 & -1 & \cdots \\ & \ddots & \ddots & \ddots \\ & 0 & -1 & 1 \end{bmatrix}$$

# Question

#### Why should the red points be connected?



#### Answer

#### They should not, indeed



## Fractional Tikhonov + Graph Laplacian



# Remark 1/2



# Remark 2/2



### another example - heat(n, 1) 5% noise



#### another another example - deriv2(n,3), 2% noise



# $(another)^3$ example - heat(n, 1) 2% noise



## Some references

- Shuman, D. I., Narang, S. K., Frossard, P., Ortega, A., and Vandergheynst, P., *The emerging field of signal processing on* graphs: Extending high-dimensional data analysis to networks and other irregular domains, IEEE Signal Processing Magazine, 30(3), 83-98 (2013).
- Faber, X. W. C., *Spectral convergence of the discrete Laplacian on models of a metrized graph*, New York J. Math, 12, 97-121 (2016).
- Bianchi, D., and Donatelli, M., *On generalized iterated Tikhonov regularization with operator-dependent seminorms*, Electronic Transactions on Numerical Analysis, 47, 73-99 (2017).
- Gerth, D., Klann, E., Ramlau, R., and Reichel, L., On fractional Tikhonov regularization. Journal of Inverse and Ill-posed Problems, 23(6), 611-625 (2008).
- Bianchi, D., and Donatelli, M., Fractional-Tikhonov regularization on graphs for image restoration, preprint.