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Motivation. Why inverse problems? Some examples where
they arise

Inverse problems arise in many fields of science and life:
1. Medical imaging
2. Geophysics
3. Industrial process monitoring
4. Remote sensing
5. Pricing financial instruments, etc.

GOAL: Design and analyze reliable and computationally effective
mathematical solution methods for inverse problems.
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Regularization

Inverse problems ≡ Troubles

Naive solution of an equation with the blurring operator.
What we usually do?
x = A†b, where A† is the Moore-Penrose pseudoinverse.

Figure: Direct solving ill-posed problems (example by James Nagy, Emory
University, Atlanta).
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Introduction

GOAL: Solve Ax = b. A ∈ R100x100 , x, b,∈ R100 generated by Matlab
code [A, x,b]= shaw(100).
Naive solution: x = A−1b

Question: What will happen if I calculate the solution a little bit more
carefully, i.e, x=A\b?
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Introduction

GOAL: Solve Ax = b. A ∈ R100x100 , x, b,∈ R100 generated by Matlab
code [A, x,b]= shaw(100).

Question: What will happen if there is some noise in the right- hand side
b???
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Motivation. Why inverse problems

Definition: (Well- posedness, Hadamard 1865-1963) A problem is called
well-posed if:

a solution exists

the solution is unique

the solution depends continuously on the given data (the solution is
stable).

If at least one of the above conditions is violated, then the problem
becomes ill-posed.
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Problem with ill-conditioned matrices

GOAL: Solve Ax + e = btrue . A ∈ Rnxn , x, btrue ,∈ Rn

A is large ill-conditioned and maybe rank deficient.

b represents the measured data

e is the noise from measurements or other sources.

Problems with the properties above are called linear ill-posed problems

Methods to solve?? Some..
Generally we regularize and then solve.
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Notation

A ∈ Rmxn

b ∈ Rm where b = btrue + e

x ∈ Rn is the solution we are looking for.

‖ · ‖ is the Euclidian norm, i.e. ‖ · ‖ = ‖ · ‖2

µ =
1

β
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Introduction:

Consider the following problem:

min
x∈Rn
‖Ax − b‖

DREAM: Would like to compute a solution of Ax = btrue
REALITY: Would like to compute an approximate solution of Ax = b
since btrue is not known.
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Tikhonov regularization

The possibly most popular regularization method is Tikhonov
regularization.

Standard form : min
x∈Rn
{‖Ax − b‖2 + µ‖x − x0‖2} (3)

General form : min
x∈Rn
{‖Ax − b‖2 + µ‖L(x − x0)‖2} (4)

If L= I (Identity), then the Tikhonov minimization problem is said to
be in the standard form.

If L 6= I (Identity), then the Tikhonov minimization problem is said to
be in the general form.

The matrix L is chosen such that

N (A) ∩N (L) = 0 (5)

For µ > 0 the Tikhonov minimization problem has unique solution.
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The discrepancy principle

Assume that a fairly estimate for δ = ‖b − btrue‖2 is known.
The discrepancy principle prescribes that µ > 0 be chosen so that
‖Axµ − b‖2 = ηδ for some constant η > 1 independent of δ.

Let define the function φ(µ) = ‖Axµ − b‖2.
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From Tikhonov to Iterated Tikhonov

Consider xk is our solution at some iteration k.

Our direct solution is given by x† = A†b and let ek = x† − xk

x† = xk + ek ≈ xk + hk = xk+1

A(ek) = A(x† − xk) = btrue − Axk ≈ b − Axk = rk

hk = min
x∈Rn
‖Ah − rk‖2 + µ‖Lh‖2

hk = (ATA + µLTL)−1AT (b − Axk)

xk+1 = xk + (ATA + µLTL)−1AT (b − Axk)
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GSVD (Generalized Singular Value Decomposition)

The GSVD is a generalization of the SVD of A and the generalized
singular values of the pair (A,L) are essentially the square roots of the
generalized eigenvalues of the matrix pair (ATA,AAT )

Let A ∈ Rmxn and let L ∈ Rpxn satisfy m ≥ n ≥ p
Assume that N(A) ∩ N(L) = 0 and that L has full row rank.

The columns of U and V are orthonormal, X is nonsingular with
columns that are ATA orthonormal and Σ and M are pxp diagonal
matrices.

The diagonal elements of Σ and M are nonnegative and ordered such
that 0 ≤ σ1 ≤ σ2 ≤ ... ≤ σp ≤ 1, 0 < µp ≤ µp−1 ≤ ... ≤ µ1 < 1.
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GSVD (Generalized Singular Value Decomposition)

They are normalized such that σ2i + µ2i = 1, i = 1, 2, .., p.

Then, the generalized singular values γi of (A,L) are defined as the
ratios γi = σi

µi
, i = 1, 2, ..., p.

The pairs (σi , µi ) are well conditioned with respect to perturbations
in A and B.
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Standard Tikhonov Regularization in general form

Assume that A and L are square matrices in Rnxn and define the
factorizations as:

A = UΣY T and L = VΛY T , where

U,V ∈ Rnxn are orthogonal matrices

Σ = diag [σ1, σ2, ..., σn] ∈ Rnxn

Λ = diag [λ1, λ2, ..., λn] ∈ Rnxn

The matrix Y is nonsingular

Due to (5) the unique solution will be given by:

xµ = (ATA + µk I )
−1ATb (12)
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Formulas for Iterated Tikhonov with GSVD

Consider the Iterated Tikhonov formula in the general case:

xk+1 = xk + (ATA + µLTL)−1AT (b − Axk) or equivalently:

(ATA + µLTL)xk+1 = ATb + µLTLxk ,
xk+1 = (ATA + µLTL)−1(ATb + µLTLxk)
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Formulas for Iterated Tikhonov

Let A = UΣY T and L = UΛY T . Substituting onto the above
formula will get the simplified version of the iterations:
Y (ΣTΣ + µΛTΛ)Y T xk+1 = Y (ΣTUTb + µΛTΛY T xk)

let Zk = Y T xk and b̂ = UTb the formulas will become:
Zk+1 = (ΣTΣ + µΛTΛ)−1(ΣT b̂ + µΛTΛZk)

Zk+1 = (ΣTΣ + µΛTΛ)−1(ΣT b̂ + µΛTΛZk) (?)
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Formulas for Discrepancy Principle, Iterated Tikhonov
GSVD

Use the idea of the iterated formula:
xk+1 = xk + (ATA + µLTL)−1AT (b − Axk) and the Discrepancy
principle: ‖Axk+1 − b‖2 = (ηδ)2

Use the GSVD decomposition of A and L and plug in the iterated
formula will get:

‖Σ(ΣTΣ + µΛTΛ)−1ΣT (b̂ − ΣZk) + ΣZk − b̂‖2 = (ηδ)2∑m
j=1(

σ2
j

σ2
j +µλ2

j
(b̂j − σj(x̂k)j) + σj(x̂k)j − b̂j)

2 = (ηδ)2

Using the fact µ = 1
β will get the final formula:

m∑
j=1

(
b̂jλ

2
j − σj(x̂k)jλ

2
j

βσ2j + λ2j
)2 = (ηδ)2 (??)
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All final formulas together

1 Zk+1 = (ΣTΣ + µΛTΛ)−1(ΣT b̂ + µΛTΛZk)

(?)

2 φ(β) =
∑m

j=1

(
b̂jλ

2
j −σj (x̂k )jλ

2
j

βσ2
j +λ2

j

)2

− (ηδ)2

(??)

3 φ
′
(β) =

∑m
j=1

−2σ2
j (b̂jλ

2
j −σj (x̂k )jλ

2
j )

2

(βσ2
j +λ2

j )
3

(? ? ?)

4 φ
′′

(β) =
∑m

j=1

6σ4
j (b̂jλ

2
j −σj (x̂k )jλ

2
j )

2

(βσ2
j +λ2

j )
3

(? ? ??)
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Problem with ill-conditioned matrices

Algorithm 1 ( Iterated Tikhonov with GSVD)

Input: Measurement matrix A, regularization parameter L and data b.
Output: Approximate solution xk ≈ x

0. Calculate the GSVD of the pair (A,L), A = UΣY T , L = VΛY T

1. Initialize µ =
1

β
( in general β = 0), x0 = 0.

Let Zk = Y TXk and b̂ = UTb

for k=1, 2, .. until stopping criteria do:

2. Calculate µk to satisfy the Discrepancy Principle using the function
φ(β)

3. Update Zk+1 = (ΣTΣ +
1

β
ΛTΛ)−1(ΣT b̂ +

1

β
ΛTΛZk)

end
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Comparing Tikhonov with Iterated Tikhonov.

Table: Relative error (1% noise added)

. Tikhonov GSVD ITGSVD

shaw(100) 0.2503 0.1002
baart(100) 0.0905 0.0356

deriv2(100,2) 0.0202 0.0152
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Comparing!

Comparing our new algorithm with a previous algorithm [A. Buccini,
M.Donatelli, L.Reichel] where they use a sequence of regularization
parameters which satisfy the condition:∑∞

k=0 α
−1
k =

1

α0

∑∞
k=0 q

−1
k =∞

Note 1: Their method needs a good approximation of the parameter q,
and a good choice of α0 which will depend on the matrix L .
Note 2: They use q=0.8 and α0 = 106

Mirjeta PASHA (KSU) Candidacy exam May 23, 2018 23 / 30



Comparing GIT and ITGSVD with baart(100) and
shaw(100)

Figure: a. Example of baart(100) Figure: b. Example of shaw(100)

Table: Relative error (1% noise added)

. GIT ITGSVD

shaw(100) 0.0453 0.0815.
baart(100) 0.1663 0.1750
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Zero finders

We consider 4 zero finders to compare the results. Why? Finding the
regularization parameter in the best way is our GOAL.

Good regularization parameter =⇒ Good approximate solution

Since we use iterative methods to find β from φ(β) = 0, the
approximated solution depends on the method too.

We will consider the iterative methods:
1 Bisection method ( It will find the solution, but not clear which should

be the interval that we look for β and the convergence is very slow )
2 Newton method ( The convergence is he fast, quadratic?, but it may

find solutions which are not accepted (β < 0) and the regularization is
not valid. )

3 New convergence method ( L. Reichel, A. Shyshkov) which yields
cubic convergence.

4 Newton method applied to 1/Φ(β)
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Comparing the zero finders

Figure: a. Example of baart(100) Figure: b. Example of shaw(100)

Table: Relative error shaw(100) (1% noise added)

. Relative error Time(s)

Bisection 0.0504 0.098
Newton 0.1663 0.073

Newton Inverse 0.1763 0.089
New zero 0.0486 0.0413
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Advantages and disadvantages of IT-GSVD

Advantages:

It uses the information of the matrices A and L to approximate the
solution in a better way.

It evaluates the regularization parameter without any prior knowledge.

It is a relatively good method for small dimension problems.

Compared to GIT there is no need to have prior knowledge of the 2
parameters that this method use.

Disadvantages:

Might be a problem using this method if there are very high
dimension matrices since the computation of the GSVD of the pair
(A,L) is expensive.
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Questions?

Questions?
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Thank you!

Thank you!
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