Adaptive Preconditioning for TV Regularisation

Malena Sabaté Landman Silvia Gazzola

Como, 23rd May 2018

Smoothing Norm Preconditioning

 [P. C. Hansen and T. K. Jensen (2007)]Tikhonov Regularization

$$
\min _{x \in \mathbb{R}^{n}}\left\{\|A x-b\|_{2}^{2}+\lambda\|L x\|_{2}^{2}\right\} \quad \text { for } \quad L \in \mathbb{R}^{n \times n}
$$

Standard form transformation

$$
\begin{gathered}
\min _{y \in \mathbb{R}^{n}}\left\{\|\bar{A} y-\bar{b}\|_{2}^{2}+\lambda\|y\|_{2}^{2}\right\} \\
\text { for } \hat{A}=A L^{-1}, \hat{b}=b \text { and } y=L x .
\end{gathered}
$$

Smoothing Norm Preconditioning

Tikhonov Regularization

$$
\min _{x \in \mathbb{R}^{n}}\left\{\|A x-b\|_{2}^{2}+\lambda\|L x\|_{2}^{2}\right\} \quad \text { for } \quad L \in \mathbb{R}^{p \times n}
$$

Standard form transformation

$$
\min _{y \in \mathbb{R}^{n}}\left\{\|\bar{A} y-\bar{b}\|_{2}^{2}+\lambda\|y\|_{2}^{2}\right\}
$$

for $\hat{A}=A L_{A}^{\dagger}, \hat{b}=b-A x_{0}$ and $x_{L}=L_{A}^{\dagger} y_{L}+x_{0}=L_{A}^{\dagger} y_{L}+K t_{0}$ for $\mathcal{R}(K)=\mathcal{N}(L)$. We can prove that $x_{0}=K(A K)^{\dagger} b$.

In order to apply GMRES we modify the system as:

$$
A x_{L}=b \rightarrow A\left[L_{A}^{\dagger}, K\right]\left[\begin{array}{c}
\bar{y}_{L} \\
t_{0}
\end{array}\right]=b,
$$

once premultiplied by $\left[L_{A}^{\dagger}, K\right]^{T}$, gives the 2×2 block system

$$
\left[\begin{array}{cc}
\left(L_{A}^{\dagger}\right)^{T} A L_{A}^{\dagger} & \left(L_{A}^{\dagger}\right)^{T} A K \\
K^{T} A L_{A}^{\dagger} & K^{T} A K
\end{array}\right]\left[\begin{array}{c}
\bar{y}_{L} \\
t_{0}
\end{array}\right]=\left[\begin{array}{c}
\left(L_{A}^{\dagger}\right)^{T} b \\
K^{T} b
\end{array}\right] .
$$

We can easily eliminate t_{0} from this system by inverting the 1×1 $(2,2)$ block, obtaining the Schur complement system,

$$
\left(D^{\dagger}\right)^{T} P A L_{A}^{\dagger} \bar{y}_{L}=\left(D^{\dagger}\right)^{T} P b \rightarrow\left(D^{\dagger}\right)^{T} P A \bar{x}_{L}=\left(D^{\dagger}\right)^{T} P b
$$

where $P=I-A K\left(K^{T} A K\right)^{-1} K^{T} \in \mathbb{R}^{N \times N}$.

TV-ReGMRES(WD)

Total variation Regularization

$$
\min _{x \in \mathbb{R}^{n}}\left\{\|A x-b\|_{2}^{2}+\lambda T V(x)\right\}
$$

Discretization of TV regularization term

- 1d case. In a discrete setting with $x \in \mathbb{R}^{N}, \operatorname{TV}(x)=\left\|D_{1 d} x\right\|_{1}$,

$$
D_{1 d}=\left[\begin{array}{cccc}
1 & -1 & & \\
& \ddots & \ddots & \\
& & 1 & -1
\end{array}\right] \in \mathbb{R}^{(N-1) \times N}
$$

- 2d case. In a discrete setting,

$$
\operatorname{TV}(x)=\left\|\left(\left(D^{h} x\right)^{2}+\left(D^{v} x\right)^{2}\right)^{1 / 2}\right\|_{1}
$$

where, $x \in \mathbb{R}^{N}$ for an array $V \in \mathbb{R}^{n \times n}$ so $N=n^{2}$ and the discrete first derivatives in the horizontal and vertical directions are given by

$$
D^{h}=\left(D_{1 d} \otimes I\right) \in \mathbb{R}^{n(n-1) \times n^{2}}, D^{v}=\left(I \otimes D_{1 d}\right) \in \mathbb{R}^{n(n-1) \times n^{2}}
$$

Iterative Reweighed Norm
[B. Wohlberg and P. Rodríguez (2007)]

$$
\|x\|_{1} \approx\|W x\|_{2}
$$

- 1d case. The weighting matrix is:

$$
W_{1 d}=W_{1 d}(x)=\operatorname{diag}\left(\left|D_{1 d} x\right|^{-1 / 2}\right) \in \mathbb{R}^{(N-1) \times(N-1)},
$$

- Component-wise modulus and exponentiation.
- 2d case. Less straightforwardly:

$$
\begin{aligned}
\tilde{W}_{2 d} & =\tilde{W}_{2 d}(x)=\operatorname{diag}\left(\left(\left(D^{h} x\right)^{2}+\left(D^{v} x\right)^{2}\right)^{-1 / 4}\right) \in \mathbb{R}^{\tilde{N} \times \tilde{N}} \\
W_{2 d} & =W_{2 d}(x)=\left[\begin{array}{cc}
\tilde{W}_{2 d} & 0 \\
0 & \tilde{W}_{2 d}
\end{array}\right] \in \mathbb{R}^{2 \tilde{N} \times 2 \tilde{N}}, \\
D_{2 d} & =\left[\begin{array}{c}
D^{h} \\
D^{v}
\end{array}\right] \in \mathbb{R}^{2 \tilde{N} \times N} \text { where } \tilde{N}=n(n-1) .
\end{aligned}
$$

TV-ReGMRES(WD)

Total variation Regularization

$$
\begin{aligned}
& \min _{x \in \mathbb{R}^{n}}\left\{\|A x-b\|_{2}^{2}+\lambda T V(x)\right\}=\min _{x \in \mathbb{R}^{n}}\left\{\|A x-b\|_{2}^{2}+\lambda\|D x\|_{1}\right\} \\
& \approx \min _{x \in \mathbb{R}^{n}}\left\{\|A x-b\|_{2}^{2}+\lambda\|W D x\|_{2}\right\}
\end{aligned}
$$

TV-ReGMRES(WD)

Total variation Regularization

$$
\begin{aligned}
\min _{x \in \mathbb{R}^{n}}\left\{\|A x-b\|_{2}^{2}+\lambda T V(x)\right\} & =\min _{x \in \mathbb{R}^{n}}\left\{\|A x-b\|_{2}^{2}+\lambda\|D x\|_{1}\right\} \\
& \approx \min _{x \in \mathbb{R}^{n}}\left\{\|A x-b\|_{2}^{2}+\lambda\|W D x\|_{2}\right\}
\end{aligned}
$$

Standard form transformation

$$
\min _{y \in \mathbb{R}^{n}}\left\{\|\bar{A} y-\bar{b}\|_{2}^{2}+\lambda\|y\|_{2}^{2}\right\}
$$

for $\hat{A}=A(W D)_{A}^{\dagger}, \hat{b}=b-A x_{0}$ and
$x_{L}=(W D)_{A}^{\dagger} y_{L}+x_{0}=(W D)_{A}^{\dagger} y_{L}+K t_{0}$ for $\mathcal{R}(K)=\mathcal{N}(W D)$ and $x_{0}=K(A K)^{\dagger} b$.

We can reproduce the results we had for the SN-GMRES:

$$
A\left[L_{A}^{\dagger}, K\right]\left[\begin{array}{c}
y_{L} \\
t_{0}
\end{array}\right]=b
$$

once premultiplied by $\left[D^{\dagger}, K\right]^{T}$, gives the 2×2 block system

$$
\left[\begin{array}{cc}
\left(D^{\dagger}\right)^{T} A L_{A}^{\dagger} & \left(D^{\dagger}\right)^{T} A K \\
K^{T} A L_{A}^{\dagger} & K^{T} A K
\end{array}\right]\left[\begin{array}{c}
y_{L} \\
t_{0}
\end{array}\right]=\left[\begin{array}{c}
\left(D^{\dagger}\right)^{T} b \\
K^{T} b
\end{array}\right]
$$

We can easily eliminate t_{0} from this system by inverting the 1×1 $(2,2)$ block, obtaining the Schur complement system,

$$
\left(D^{\dagger}\right)^{T} P A L_{A}^{\dagger} y_{L}=\left(D^{\dagger}\right)^{T} P b \rightarrow\left(D^{\dagger}\right)^{T} P A \bar{x}_{L}=\left(D^{\dagger}\right)^{T} P b
$$

where $P=I-A K\left(K^{T} A K\right)^{-1} K^{T} \in \mathbb{R}^{N \times N}$.

The TV-ReGMRES (v) method.

Input: $\widehat{A}, \widehat{b},\left\{i_{1}, \ldots, i_{k}\right\}$
(1) Perform $m^{(1)} \operatorname{GMRES}(D)$ iterations with input \widehat{A} and \widehat{b} to obtain the relation $\widehat{A} Z_{m}=V_{m+1} G_{m}$
(2) Find $\bar{x}_{L}=Z_{m} s_{m}$ and $r=V_{m+1}\left(\|\widehat{b}\|_{2} e_{1}-G_{m} s_{m}\right)$, where $s_{m}=\arg \min _{s \in \mathbb{R}^{m}}\left\|G_{m} s-\right\| \widehat{b}\left\|_{2} e_{1}\right\|_{2}$
(3) Compute the reduced QR factorization $G_{m} P_{k}=Q_{\mathrm{GP}} R_{\mathrm{GP}}$
(4) Set $C_{k}=V_{m+1} Q_{\mathrm{GP}}$ and $U_{k}=Z_{m} P_{k}(R)_{\mathrm{GP}}^{-1}$

For $j=1,2, \ldots$ until a stopping criterion is satisfied
(5) Perform m GMRES $(W D)$ iterations with input $\left(I-C_{k}\left(C_{k}\right)^{T}\right) \widehat{A}$ and $\left(I-C_{k}\left(C_{k}\right)^{T}\right) v$
use recycling strategies to compute an expression $\widehat{A} \tilde{Z}_{m+k}=\tilde{V}_{m+k+1} \tilde{G}_{m+k}$ and compute an approx. of \bar{x}_{L}
(6) Compute the reduced QR factorization $G_{k+m} P_{k}=Q_{\mathrm{GP}} R_{\mathrm{GP}}$.
(7) Set $C_{k}=\tilde{V}_{m+1} Q_{\mathrm{GP}}$ and $U_{k}=\tilde{Z}_{k+m} P_{k}\left(R_{H P}\right)^{-1}$
end
Take $x_{L}=\bar{x}_{L}+x_{0}$

Numerical Experiments

History of relative errors

Restarting r

Restarting b

History of relative total variation

Restarting r

Restarting b

Numerical Experiments

Best reconstructions for different methods

GKB

GMRES

TV-GMRES(D)

TV-ReGMRES(WD)-R(r)
TV-ReGMRES(WD)-R(b)

Numerical Experiments

Best reconstructions for different outer iterations of TV-ReGMRES(WD)-R(b)

Iteration 1

Iteration 2

Iteration 3

Selected references

B. Wohlberg and P. Rodríguez (2007). An iteratively reweighted norm algorithm for minimization of total variation functionals. IEEE Signal Process. Lett., 14:948-951.
P. C. Hansen and T. K. Jensen (2007). Smoothing-norm preconditioning for regularizing minimum-residual methods. SIAM Journal on Matrix Analysis and Applications, 29(1):1-14.

