Frontiers in Electrical Brain Imaging: stroke, epilepsy and real-time functional activity

Andrea Samorè

CMIP 2018 Como

Electrical Brain Imaging

Electrical brain imaging refers to the set of techniques that exploit **electrical signals** to generate an **image** of the structure or functional activity of the brain.

- Quick setup
- Portability
- Low cost
- High temporal resolution [ms]

Electrical Impedance Tomography (EIT)

An **impedance map** of the region of interest is reconstructed from **measured electric potentials** generated by **current injections**

- High computational requirements
- Low spatial resolution [cm]

ElectroEncephaloGraphy (EEG)

Awake with mental activity	M. M. Marken M Marken Marken Ma	Beta 14-30 Hz
Awake and resting	······································	Alpha 8-13 Hz
Sleeping	mmm	Theta 4-7 Hz
Deep sleep	$\checkmark \checkmark \checkmark \checkmark \checkmark$	Delta <3.5 Hz
	1 sec	

Electric potentials generated by neurons are recorded. Waveforms at different frequencies are associated to different mental states

Electrical Impedance Tomography

EIT

Applied currents

The reconstruction is an underdetermined and ill-posed inverse problem

Stroke Overview

Life-threatening medical condition characterized by **loss of brain function** due to **disruption of blood perfusion**.

- **Ischemic**: the <u>blood supply</u> to a brain region is reduced or completely <u>cut off</u>
- Hemorrhagic: blood floods the region adjacent to the leakage of a vessel

Early recognition and correct discrimination are crucial for effective therapy (4.5 h tPA limit).

EIT of Strokes

Well defined electrical properties:

- Ischemic strokes increase the impedance of the affected region
- Hemorrhagic strokes decrease the impedance of the affected region

Potential EIT use case:

- Data acquisition with a portable EIT system is performed on site by a trained operator
- Measured data (few KB) is sent offsite for image reconstruction and stroke detection and classification
- The correct therapy is initiated as soon as possible

"State of the art" in applications

Tikhonov regularized reconstruction

Starting from an **initial guess** conductivity distribution, the conductivity of each voxel of the discretized domain is updated and a **conductivity map** of the region of interest is generated.

General purpose algorithm Provides shape approximation Computationally expensive Regularization parameter optimization is critical

Alternative Approach

parametric reconstruction

- Each segmented head tissue is assigned a value according to literature data.
- Compact conductivity anomaly is placed at an initial guess position.
- Position and size of the anomaly and conductivity of the tissues are iteratively updated till convergence or disappearance of the moving anomaly.

Faster and more accurate than Tikhonov

Special purpose algorithm

Phantom Example

Focal Epilepsy Overview

A limited part of the brain, the epileptogenic focus, initiates an abnormal activity which can spread to other brain regions.

If pharmacoresistant, then treatment consists in **surgical resection** of the epileptogenic focus.

- Various noninvasive imaging techniques can be used for localization both from a structural (MRI) and a functional (PET, SPECT, (video)EEG,..) perspective
- If no definitive conclusion, invasive EEG measurements can be performed (SEEG)

Standard analysis consists in **looking at raw data** to locate the initiating focus.

Surgical Resection

After localization, first surgery alleviates or **remove symptoms only in about 60%** of the cases. Patient may have to return for **second surgery.**

- Multiple foci
- Insufficient resection

There is room for improvement!

- SEEG electrodes can be used to both **measure potentials** (EEG) or **inject currents** (cortical mapping)
- Recent research highlights a 10% difference in conductivity between epileptic and non-epileptic cortex

- Possible to attempt time difference EIT imaging
- EIT may provide a direct, independent measurement of epileptic activity

Epilepsy Imaging Workflow

Tikhonov algorithm preferred to parametric approach due to the highly inhomogeneous background (SEEG electrodes).

Simulation Experiments

- Average resection volume: $30 \text{ cm}^3 \rightarrow \text{sphere}$ with 4 cm diameter
- EIT resolution: \approx cm
- Completely new source of information with clinical significance
- Only slight modification of the clinically used SEEG protocol is required

EEG Introduction

- Recording of electric potentials generated by the activity of neurons.
- Generally measured on the scalp.

• Commonly used to diagnose brain disorders associated to its electrical activity (epilepsy, brain tumors, sleep disorders).

Brain Imaging through EEG

- Identify which region of the brain produced the electrical signal recorded on the scalp and produce a functional map of brain activity.
- Inverse problem (underdetermined and ill posed).

To attack the problem, an **electrical model** of the brain is needed.

The electrical model can be fine-tuned to the specific subject using EIT measurements.

Electrical Model MRI Scan Tissue Segmentation Skin Bone Updates Connective tissue CSE Gray matter White matter **EIT Inversion** EIT Algorithm Measurements

Inverse Problem

Identify the current density J in each voxel of the domain that corresponds to the electric potentials measured on the scalp Φ

sLORETA

standardized LOw Resolution brain Electromagnetic TomogrAphy can localize test point sources with zero localization error in the absence of noise

CREAM: CReativity Enhancement through Advanced brain Mapping and stimulation

http://www.ict-cream.eu/project_sticky/

- Goal: measure functional activity of the brain and compute real-time stimuli to modulate a high-level behaviour such as creativity
- Previous studies have shown that electrical stimulation can modulate verbal associative thoughts, problem solving, insight....
- Current stimuli (tDCS, tACS,...) and visual and acustic stimuli.
- Engineering & ICT: link measurement and electrical stimulation
- Need quick reconstructions to inform stimulation in real time

- Cognitive psychology
- Neuroscience

Parallel Implementation

Questions?