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The resting-state fMRI brain networks

Experimental Dataset: 15 Healthy subjects | 3T MRI scanner

Question: are there some noise correlations?
I Spectral analysis of Pearson correlation matrix
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The spectral analysis

Principal Component Analysis (PCA): it is a method that find an
orthogonal transformation that trasforms a multivariate system to
new coordinated that are linearly uncorrelated (Pearson 1901, etc)

PCA ⇒ Correlation Matrix to study the collective brain activity
that is identified as statistical analysis of the eigenvectos, i.e. the
largest eigenvalues ...

Questions A: how to select the largest eigenvalues? how to include
eigenvalues associated to informative eigenvectors

Question B: how exclude eigenvalues associate to non-informative
eigenvectors? (randomness!)

I Percentage of explained variance by eigenvalues (% > 70/80)
I Kaiser (eigenvalues > 1)
I Random Matrix theory cut-off
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Random Matrix Theory cut-off

Marchenko-Pastur Spectral Distribution

i.e. the eigenvalues density of the empirical correlation matrix for
uncorrelated i.i.d. Gaussian variables

ρ(λ) = 1
2πrλ

√
(λ+ − λ)(λ− λ−)

I r = N/T = 0, 48, i.e. N=96 ROIs and T=208 Time Points
I λ± = (1±

√
r)2

λ± are the support of eigenvalues of Gaussian (uncorrelated)
multivariate variables =⇒ the formal range to include eigenvalues
associated to random variables

I λ− = 3.4571
I λ+ = 0.0198
I The eigenvalues greater then λ+ are not random, therefore, they are

associated to informative eigenvectors (and correlations)
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The selection of eigenvalues by formal methods
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The selection of eigenvalues by formal methods

According to Marchenko-Pastur limits, there are (in average) 5
informative eigenvectors in the dataset that explain approximately the
90 % of variance explained
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Computation of the five prototype eigenvectors

There are 15 subjects ⇒ compute the bootstrapped-mean to have the
five prototype eigenvectors
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Visualization of the five prototype eigenvectors
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Conclusion - Why use Marchenko-Pastur Eigenvalues
Distribution

In Neuroscience (and in Neuroimaging) it is important to find
functional brain networks,

I i.e. the standard model is that the human brain is intrinsically organized
into anticorrelated functional networks (PNAS 2005 - seminal paper)

know if correlations are informative (not random) is crucial for a
correct explorative analysis of functional MRI images
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Conclusion - Why use Marchenko-Pastur Eigenvalues
Distribution

the Marchenko-Pastur Spectral Distribution is a null model based on
Random Matrix Theory able to find random correlations

in fMRI literature there are few papers that have used it (16) in the
total fMRI works (767.000 - clustering, ICA, dual regression, etc)

Thank you ;-)
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