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We now briefly describe the approach and the results in [I.R.
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They considered the following minimization problem
(k1) = argmin | B(k, 1) — gs|* + 7 llk — k||* + a |LF* + 8 kI,

P TN
= m (K, f
arg k_ylfnJa,ﬁ( ),

where L is a continuously invertible linear operator.

In [I.R. Bleyer and R. Ramlau, IP2013] they proved that
» The minimization above is well posed;
» The minima are stable;
» The minimization above is a regularization method if the
parameter are chosen accordingly to the noise.
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We now extend the results of [I.R. Bleyer and R. Ramlau,
IP2013-2015] to a more general functional.

We consider the functional
S5 (k. £) = |1B(k, ) — gs]|* + 7 ||k — ke||?
+ o ||f|2 + B RA(F) + BR(K),

where R¢(f) and R(k) are convex regularization term.

In the following we will assume that f, k € H' and we will set
Re(-) = Ru(:) = [Ill 7y -
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We now state some theoretical property of Ji’_;(k, f).

Theorem (Existence)

Assume that B is strongly continuous on its domain, then the
functional J)'; (f, k) has a global minimizer.

Theorem (Stability)

With the same notation and assumptions as above, let o,
a™, B, and v be fixed. Let (g(;j)/. and (kej)]. be sequences such
that gs, — g5 and k., — k., let (k;, f;) be minimizers obtained
with data gs;, k;- Then there exists a convergent subsequence
of (k;, f;) and the limit of every subsequence is a minimizer of
Jos-
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LEed e A
im —~— =0, Im —~+— =1 lim = =1n 0<n<oc.

E ’ . E ? : E Conclusions & Future
J—00 O/j J—00 a/j J—=o0 O/j work
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subsequence of (k;, f;) such that ki — ko and the limit of every
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If for a set F = {f} it holds that ||f"
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| < Ck, then
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forj=0,1,...do
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k(l 1 . R X i i Numerical Example
kUt | =argmin £ ( R A[fU0, 3050 K0+, A0 g0 ¢0), um) :

§0+1) Kkt

)\(j+1) A(” ’f(IJA) — Uy Conclusions & Future
£Uth 3l fU+) — fU+1) 3 work

o | T e | T kU kO )
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Formulation

Whereas the minimizations w.r.t. f and k does not Numerical Example
. R R ) )
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Whereas the minimizations w.r.t. f and k does not Numerical Example
f(j+1 — al’g m|n ? + L ? - f(l) + g Conclusions & Future
2OéT\/ w work
» . 0\ |2
kU = arg min HkH + 35 H < kUTD 4 H—)
k TV w
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Minimization Algorithm

The proof of convergence of SeB-A is inspired by [M. Hong,

Theoretical analysis

Z'Q LUO, and M RazaVIyayn, SIOPT2016] Numerical Example
For the proof of convergence we need the following Conlusions & Future
Assumption

The norm of the iterates /) and kU) generated by SeB-A are
uniformly bounded.
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Lemma

Let €V, ) §0) kW) pe the iterations generated by SeB-A.
Then we have

The continuous model

Minimization Algorithm

H U+ _ 5(/‘)“ <C Hf(m) N f(/)H 7 Q) e

Numerical Example

Hu‘”” _ u(/’)H < CHR(/’M) _ R(/’)H
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£<k(f+1) {01 U+ §U+D). £/+1)7“(/’+1)>

The continuous model
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_r (kux £0), KW) 30, £0), um)
' ' ' ' Numerical Example
2
N (C_ - B) (Hfo+1> _fu>H2 + ko - .;mH?)
“\w 2
5 5 gg:wkc\uswoms & Future
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Dep. of Mathematical Sc.
Kent State Univeristy
20 Ohio, USA



Minimization Algorithm KENT STATE

Theoretical analysis (continued)

NIVERSITY

Semi-blind
regularization for
inverse problems

Introduction
Lem ma The continuous model
Let L be the Augmented Lagrangian defined above and
kO, 0 k), f<f>;§(“, V) the iterates generated by SeB-A.
Assume that € — & < 0,then we have that oL

i ) Numerical Example
,-i“lc r (kU), £0), kW) 30, £, u‘”) >,
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where v is the global minimum of J{‘i’fﬂ( k,f).
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We are now in position to state our main result

Theorem
The iterates generated by SeB-A converge to a limit point

p. = (k*,f*, k..t ¢, H*)- Moreover, the followings hold

(a) p- is a stationary point
(b) Assume now that Qs x Qy is convex and compact then

lim dist <<f0),k0),f</>,|}0);5(/')’“</>) Z) -0,

J—oo

where Z* denotes the set of stationary points and dist the
Euclidean distance between sets and points.
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Before giving a numerical example we discuss the regularization for
implementation of the SeB-A algorithm and the construction of erse prosiems
Qf and Qk. Introduction

For the implementation of the SeB-A algorithm we reformulate
following [R.H. Chan, M. Tao, and X. Yuan, SIMS2013] the
minimization of JJ'; in another way

The continuous model

Minimization Algorithm

N
(k".f) =arg min ¢ [B(k.f)—gs[*+a® [f°+a™ > |
keQy,feQy i Numerical Example
Rj,k,f = @ Implementation of SeB-A

Conclusions & Future
) work

ki

N
k= kP + 8|
i=1

k=kt=TDk=k,Dt=1]},
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For the implementation of the SeB-A algorithm we reformulate

following [R.H. Chan, M. Tao, and X. Yuan, SIMS2013] the e oo o

minimization of J6 ¥ in another way

Minimization Algorithm

N
(k") =arg_ min < [B(k.f)—gs|*+a”[If|* +a™ D |fi
kEQk fEQf i Numerical Example
k f k.f I= @ Implementation of SeB-A
_’_»\/ Hk . k Conclusions & Future
work

k—kf— iD,-k:R,-,D,-f:?,-},
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Algorithm (CSeB-A)

fOI‘_/ — 07 17 - do Introduction
fu+1
?(j+1) = arg mln L (f. f./ k|R(I) RU). f(l), A(I) 5(/), CU), y,(/)) ,' The continuous model
k(j+1) f.fk

Minimization Algorithm

f6+1)
. B . . Numerical Example
+1 1 1

AU A0 fUrD — 0+ Implementation of SeB-A

£+ v §U+1) _ pfu+1)
oty | T e | O kU kG|

G+1) 0) KU+1) — pKU+D Conl & Fut
122 15 k Dk Wg:wkc usions & Future

KU+
( KU+ ) —argmin L (R' R1f|i(/4)7i(/+1),k(/+1); A(’)«,EU%C(’),MU)),'
k.k.f

end
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Algorithm (CSeB-A)
forj=0,1,...do

fU+1

1000 | = argmin £ (1.1 K[KD, KO, 10; A0, 0 0, ,0) ;
kU+1) f.f.k

kU+1)

ki) | =argmin £ (R. K, Ff00 §00) K00, X0 g0) ¢O), u(j))’-
£0+1) ikt ' - ' '

AU AN fU+1) _ fU+1)

£UH) eU) fU+1) — pfi+1)

¢ = . « KU+ — gG+1) ’

U+ ) KU+ — pkU+1

end

The minimizations in CSeB-A are easily computed and all have
a closed form. However, we are not able to provide a rigorous
convergence analysis.

KENT STATE

NIVERSITY

Semi-blind
regularization for
inverse problems

Introduction
The continuous model
Minimization Algorithm

Numerical Example
Implementation of SeB-A

Conclusions & Future
work

Dep. of Mathematical Sc.
Kent State Univeristy
Ohio, USA



Numerical Example KENT STATE

Implementation of SeB-A (continued)

NIVERSITY

Semi-blind
0 0 e
) —py <f< 0 >‘_> RO Z Py, (k(m) n C_> P
w w Introduction
D) + lg(.j) ' 1 TV
ffl+1) ( o <HDIf(/) + _gl(j) _ CY—) The continuous model
|t + 1¢ w w )y
1 Minimization Algorithm

kUTD = (245 A + (27 +w)l+wD*D)"~
. (2A:(j)g(5 + 2'.}/kg o C(j) + LUR(I) o D*N(l) + LUD*R(I)) Numerical Example

Implementation of SeB-A

(+1) (
k(]+1) (D k + l‘l’l <HD k +1) 1 l_l,fj) - é) ggynkc\uswons& Future
| DKG+D 4 L) To '

fU+1) — (2Aku‘\1)Ak(l’<1) + 2(aE W)l + wD*D)q
’ (2A;u+1>95 — A+ wfitD — prel) 4 wD*f(/’H))
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» f —True image;
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Constraints
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Thus we are going to impose nonnegativity and flux
constraints.
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We briefly discuss the flux constraint.
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We briefly discuss the flux constraint. e";'z’:p:ﬁﬁs
For the blurring phenomenon it holds R

(i) ki = 0;

(ii) flux (k) := 1k =1, where 1 =(1,1,...,1)". The continuous model

Then we have
» Ax has no negative entries;

Minimization Algorithm

» the row-sum and column-sum of Ag is 1; Numerical Example
» Ify = Agz, then flux (y) = flux (z2). (22) consas
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We briefly discuss the flux constraint. s
For the blurring phenomenon it holds R
(i) ki = 0;
(ii) flux (k) := 1k =1, where 1 =(1,1,...,1)". The continuous model

Then we have
» Ax has no negative entries;

Minimization Algorithm

» the row-sum and column-sum of Ag is 1; Numerical Example
» Ify = Agz, then flux (y) = flux (z). (2+) consvans
Then |t hOIdS Conclusions & Future

work

flux (f) = flux (@)
In the noisy case: gs = g +n. Then

flux (gs) = flux (g) + flux (n) =~ flux (g) + 0 = flux (g) .
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={x:x >0 n{x:flux(x) =1} = QN Q.

The continuous model

Since the projection on either Q; or Q is not trivial we will split

the constraints and use two auxiliary variables in the ADMM Minimization Algorithm
algorithm.
B . . g 1 . Numerical Example
The prpjectlons into Qg . and Qg can be computed in O(N)
Operatlons. Constraints
In par‘“cular Conkc\uswons& Future
flux (gs) — flux (x)
Pﬂgix(x) = N 14X
1 — flux (x)
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