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Introduction
The problem at hand

We consider inverse problems of the from

B(k , f ) = g.
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Introduction
The problem at hand

We consider inverse problems of the from

B(k , f ) = g.

◮ f : desired solution;
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Introduction
The problem at hand

We consider inverse problems of the from

B(k , f ) = g.

◮ f : desired solution;

◮ g: the measured data;
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Introduction
The problem at hand

We consider inverse problems of the from

B(k , f ) = g.

◮ f : desired solution;

◮ g: the measured data;

◮ k : variable on which the operator B depends, e.g., integral

kernel.
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Introduction
The problem at hand (continued)

We assume that both g and k are affected by (Gaussian) noise.
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Introduction
The problem at hand (continued)

We assume that both g and k are affected by (Gaussian) noise.

Thus the problem becomes

B(kǫ, f ) = gδ,

where
‖k − kǫ‖ < ǫ and ‖g − gδ‖ < δ.
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Introduction
The problem at hand (continued)

We assume that both g and k are affected by (Gaussian) noise.

Thus the problem becomes

B(kǫ, f ) = gδ,

where
‖k − kǫ‖ < ǫ and ‖g − gδ‖ < δ.

We would like to construct a method that simultaneously

recovers f and k .
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Introduction
The problem at hand (continued)

We assume that both g and k are affected by (Gaussian) noise.

Thus the problem becomes

B(kǫ, f ) = gδ,

where
‖k − kǫ‖ < ǫ and ‖g − gδ‖ < δ.

We would like to construct a method that simultaneously

recovers f and k .

We refer to this kind of inverse problem as semi-blind.
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Introduction
The problem at hand (continued)

Blind and semi-blind problems have been largely investigated,

see, e.g., Almeida, Bardsley, Beck, Ben-Tal, Bertero,
Bioucas-Dias, Bleyer, Boccacci, Bonettini, Brinicombe, Chan,

Cornelio, Dykes, Figueiredo, Fish, He, Jefferies, Kanzow, La

Camera, Marquina, Nagy, Ng, Oliveira, Osher, Pesquet, Pike,
Plemmons, Porta, Prato, Ramlau, Rebegoldi, Reichel,

Soodhalter, Walker, Wong, . . .
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Introduction
The problem at hand (continued)

Blind and semi-blind problems have been largely investigated,

see, e.g., Almeida, Bardsley, Beck, Ben-Tal, Bertero,
Bioucas-Dias, Bleyer, Boccacci, Bonettini, Brinicombe, Chan,

Cornelio, Dykes, Figueiredo, Fish, He, Jefferies, Kanzow, La

Camera, Marquina, Nagy, Ng, Oliveira, Osher, Pesquet, Pike,
Plemmons, Porta, Prato, Ramlau, Rebegoldi, Reichel,

Soodhalter, Walker, Wong, . . .

In particular, we would like to propose a model and an

algorithm for semi-blind regularization starting from the work in
[I.R. Bleyer and R. Ramlau, IP2013-2015].
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Introduction
Inspiring work

We now briefly describe the approach and the results in [I.R.

Bleyer and R. Ramlau, IP2013-2015].



30

Semi-blind
regularization for

inverse problems

Introduction

The problem at hand

4 Inspiring work

The continuous model

Formulation

Theoretical analysis

Minimization Algorithm

Formulation

Theoretical analysis

Numerical Example

Implementation of SeB-A

Constraints

Experiment

Conclusions & Future

work

Dep. of Mathematical Sc.

Kent State Univeristy

Ohio, USA

Introduction
Inspiring work

We now briefly describe the approach and the results in [I.R.

Bleyer and R. Ramlau, IP2013-2015].

They considered the following minimization problem

(k∗, f ∗) = argmin
k ,f

‖B(k , f ) − gδ‖
2
+ γ ‖k − kǫ‖

2
+ α ‖Lf‖

2
+ β ‖k‖1

= argmin
k ,f

J̃δ,ǫ
α,β(k , f ),

where L is a continuously invertible linear operator.
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Introduction
Inspiring work

We now briefly describe the approach and the results in [I.R.

Bleyer and R. Ramlau, IP2013-2015].

They considered the following minimization problem

(k∗, f ∗) = argmin
k ,f

‖B(k , f ) − gδ‖
2
+ γ ‖k − kǫ‖

2
+ α ‖Lf‖

2
+ β ‖k‖1

= argmin
k ,f

J̃δ,ǫ
α,β(k , f ),

where L is a continuously invertible linear operator.

In [I.R. Bleyer and R. Ramlau, IP2013] they proved that

◮ The minimization above is well posed;

◮ The minima are stable;

◮ The minimization above is a regularization method if the

parameter are chosen accordingly to the noise.
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Introduction
Inspiring work (continued)

In [I.R. Bleyer and R. Ramlau, IP2015] they developed an

algorithm for computing stationary point of J̃
δ,ǫ
α,β.
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Introduction
Inspiring work (continued)

In [I.R. Bleyer and R. Ramlau, IP2015] they developed an

algorithm for computing stationary point of J̃
δ,ǫ
α,β.

They used an alternating minimization algorithm.

k (j+1) = argmin
k

∥

∥

∥B
(

k , f (j)
)

− gδ

∥

∥

∥

2

+ γ ‖k − kǫ‖
2
+ β ‖k‖1

f (j+1) = argmin
f

∥

∥

∥B
(

k (j+1), f
)

− gδ

∥

∥

∥

2

+ α ‖Lf‖
2
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Introduction
Inspiring work (continued)

In [I.R. Bleyer and R. Ramlau, IP2015] they developed an

algorithm for computing stationary point of J̃
δ,ǫ
α,β.

They used an alternating minimization algorithm.

k (j+1) = argmin
k

∥

∥

∥B
(

k , f (j)
)

− gδ

∥

∥

∥

2

+ γ ‖k − kǫ‖
2
+ β ‖k‖1

f (j+1) = argmin
f

∥

∥

∥B
(

k (j+1), f
)

− gδ

∥

∥

∥

2

+ α ‖Lf‖
2

They proved that there exist a subsequence
{(

k (ji ), f (ji )
)}

ji
that

converges to a stationary point of J̃
δ,ǫ
α,β.
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The continuous model
Formulation

We now extend the results of [I.R. Bleyer and R. Ramlau,

IP2013-2015] to a more general functional.
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The continuous model
Formulation

We now extend the results of [I.R. Bleyer and R. Ramlau,

IP2013-2015] to a more general functional.

We consider the functional

J
δ,ǫ
α,β(k , f ) = ‖B(k , f ) − gδ‖

2
+ γ ‖k − kǫ‖

2

+ αE ‖f‖2 + αRRf (f ) + βRk (k),

where Rf (f ) and Rk (k) are convex regularization term.
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The continuous model
Formulation

We now extend the results of [I.R. Bleyer and R. Ramlau,

IP2013-2015] to a more general functional.

We consider the functional

J
δ,ǫ
α,β(k , f ) = ‖B(k , f ) − gδ‖

2
+ γ ‖k − kǫ‖

2

+ αE ‖f‖2 + αRRf (f ) + βRk (k),

where Rf (f ) and Rk (k) are convex regularization term.

In the following we will assume that f , k ∈ H1 and we will set

Rf (·) = Rk (·) = ‖·‖TV .
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The continuous model
Formulation

We now extend the results of [I.R. Bleyer and R. Ramlau,

IP2013-2015] to a more general functional.

We consider the functional

J
δ,ǫ
α,β(k , f ) = ‖B(k , f ) − gδ‖

2
+ γ ‖k − kǫ‖

2

+ αE ‖f‖2 + αRRf (f ) + βRk (k),

where Rf (f ) and Rk (k) are convex regularization term.

In the following we will assume that f , k ∈ H1 and we will set

Rf (·) = Rk (·) = ‖·‖TV .

Consequently we use the following notation

αR = αTV.
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The continuous model
Theoretical analysis

We now state some theoretical property of J
δ,ǫ
α,β(k , f ).
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The continuous model
Theoretical analysis

We now state some theoretical property of J
δ,ǫ
α,β(k , f ).

Theorem (Existence)
Assume that B is strongly continuous on its domain, then the
functional J

δ,ǫ
α,β (f , k) has a global minimizer.
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The continuous model
Theoretical analysis

We now state some theoretical property of J
δ,ǫ
α,β(k , f ).

Theorem (Existence)
Assume that B is strongly continuous on its domain, then the
functional J

δ,ǫ
α,β (f , k) has a global minimizer.

Theorem (Stability)
With the same notation and assumptions as above, let αE,
αTV, β, and γ be fixed. Let

(

gδj

)

j
and

(

kǫj

)

j
be sequences such

that gδj
→ gδ and kǫj

→ kǫ, let (kj , fj) be minimizers obtained

with data gδj
, kǫj

. Then there exists a convergent subsequence
of (kj , fj) and the limit of every subsequence is a minimizer of

J
δ,ǫ
α,β.
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The continuous model
Theoretical analysis

We first define the concept of minimum norm solution in our

framework

Definition
The minimum norm solution of B (k0, f ) = g0 is

f † = arg min
f∈H1

{‖f‖2 + ‖f‖TV : B (k0, f ) = g0}.
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The continuous model
Theoretical analysis

Theorem (Regularization property)
Let

(

gδj

)

j
and

(

kǫj

)

j
be sequences such that

∥

∥gδj
− g0

∥

∥ < δj and
∥

∥kǫj
− k0

∥

∥ < ǫj

and such that δj , ǫj → 0 as j → ∞. Let αEj , αTVj , and βj be

sequences such that αEj , α
TV

j , βj → 0 as j → ∞, moreover,
assume that it holds

lim
j→∞

δ2
j + γǫ2

j

αEj
= 0, lim

j→∞

αTVj

αEj
= 1, lim

j→∞

βj

αEj
= η 0 < η < ∞.

Call (kj , fj) :=
(

k
δj ,ǫj

αj ,βj
, f

δj ,ǫj

αj ,βj

)

, then there exists a convergent

subsequence of (kj , fj) such that kj → k0 and the limit of every
convergent subsequence of fj is the minimum norm solution of

B(k0, f ) = g0.
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Minimization Algorithm
Formulation

We now formulate an algorithm for computing a stationary
point of J

δ,ǫ
α,β(k, f), where, for simplicity, we only consider the

finite dimensional case, i.e., we assume that k, f ∈ R
N .
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Minimization Algorithm
Formulation

We now formulate an algorithm for computing a stationary
point of J

δ,ǫ
α,β(k, f), where, for simplicity, we only consider the

finite dimensional case, i.e., we assume that k, f ∈ R
N .

We use the Alternating Directions Multipliers Method (ADMM)
and provide a proof of convergence.
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Minimization Algorithm
Formulation

We now formulate an algorithm for computing a stationary
point of J

δ,ǫ
α,β(k, f), where, for simplicity, we only consider the

finite dimensional case, i.e., we assume that k, f ∈ R
N .

We use the Alternating Directions Multipliers Method (ADMM)
and provide a proof of convergence.

We impose some constraints on the solution, i.e., we impose

that (k, f) ∈ Ωk × Ωf.
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Minimization Algorithm
Formulation

We now formulate an algorithm for computing a stationary
point of J

δ,ǫ
α,β(k, f), where, for simplicity, we only consider the

finite dimensional case, i.e., we assume that k, f ∈ R
N .

We use the Alternating Directions Multipliers Method (ADMM)
and provide a proof of convergence.

We impose some constraints on the solution, i.e., we impose

that (k, f) ∈ Ωk × Ωf.

Thus we have to solve

(k∗, f∗) = arg min
k∈Ωk,f∈Ωf

‖B(k, f)− gδ‖
2
+ γ ‖k − kǫ‖

2

+ αE ‖f‖
2
+ αTV ‖f‖TV + β ‖k‖TV .
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Minimization Algorithm
Formulation (continued)

We rewrite the minimization problem in a more useful way

(k∗, f∗) = arg min
k̃∈Ωk,̃f∈Ωf

k̂,̂f,k,f

{

‖B (k, f)− gδ‖
2
+ αE ‖f‖

2
+ αTV

∥

∥

∥̂f
∥

∥

∥

TV

+γ ‖k − kǫ‖
2
+ β

∥

∥

∥k̂
∥

∥

∥

TV
,

k = k̃, f = f̃, k = k̂, f = f̂
}

.
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Minimization Algorithm
Formulation (continued)

We rewrite the minimization problem in a more useful way

(k∗, f∗) = arg min
k̃∈Ωk,̃f∈Ωf

k̂,̂f,k,f

{

‖B (k, f)− gδ‖
2
+ αE ‖f‖

2
+ αTV

∥

∥

∥̂f
∥

∥

∥

TV

+γ ‖k − kǫ‖
2
+ β

∥

∥

∥k̂
∥

∥

∥

TV
,

k = k̃, f = f̃, k = k̂, f = f̂
}

.

The associated Augmented Lagrangian is

L
(

f̃, f̂, f, k̃, k̂, k;λ, ξ, ζ,µ
)

= ‖B (k, f)− gδ‖
2
+ αE ‖f‖

2
+ αTV

∥

∥

∥̂f
∥

∥

∥

TV
+ γ ‖k − kǫ‖

2
+ β

∥

∥

∥k̂
∥

∥

∥

TV

+
ω

2

∥

∥

∥̃f − f
∥

∥

∥

2

−
〈

λ, f̃ − f
〉

+
ω

2

∥

∥

∥̂f − f
∥

∥

∥

2

−
〈

ξ, f̂ − f
〉

+
ω

2

∥

∥

∥
k̃ − k

∥

∥

∥

2

−
〈

ζ, k̃ − k
〉

+
ω

2

∥

∥

∥
k̂ − k

∥

∥

∥

2

−
〈

µ, k̂ − k
〉

.
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Minimization Algorithm
Formulation (continued)

We need the following

Assumption
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Minimization Algorithm
Formulation (continued)

We need the following

Assumption

(a) B (k, f) is bilinear;
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Minimization Algorithm
Formulation (continued)

We need the following

Assumption

(a) B (k, f) is bilinear;

(b) If k = 0 or f = 0 then B (k, f) = 0;
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Minimization Algorithm
Formulation (continued)

We need the following

Assumption

(a) B (k, f) is bilinear;

(b) If k = 0 or f = 0 then B (k, f) = 0;

(c) If for a set K = {k(l)} it holds that
∥

∥k(l)
∥

∥ < CK then

Ak(l) = B
(

k(l), ·
)

, have bounded norm;

If for a set F = {f(l)} it holds that
∥

∥f(l)
∥

∥ < CF , then

Af(l) = B
(

·, f(l)
)

have bounded norm;
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Minimization Algorithm
Formulation (continued)

We need the following

Assumption

(a) B (k, f) is bilinear;

(b) If k = 0 or f = 0 then B (k, f) = 0;

(c) If for a set K = {k(l)} it holds that
∥

∥k(l)
∥

∥ < CK then

Ak(l) = B
(

k(l), ·
)

, have bounded norm;

If for a set F = {f(l)} it holds that
∥

∥f(l)
∥

∥ < CF , then

Af(l) = B
(

·, f(l)
)

have bounded norm;

(d) The parameter ω is large enough so that

‖B (k, f)− gδ‖
2
+ αE ‖f‖

2
+

ω

2

∥

∥

∥̂f − f
∥

∥

∥

2

−
〈

ξ, f̂ − f
〉

,

‖B (k, f)− gδ‖
2 + γ ‖k − kǫ‖

2 +
ω

2

∥

∥

∥k̂ − k
∥

∥

∥

2

−
〈

µ, k̂ − k
〉

are strongly convex with modulus ρ.
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Minimization Algorithm
Formulation (continued)

Applying the ADMM algorithm we have

Algorithm (SeB-A)

for j = 0, 1, . . . do




f̃(j+1)

f̂(j+1)

k(j+1)



 = argmin
f̃,̂f,k

L
(

f̃, f̂, k
∣

∣k̃(j), k̂(j), f(j);λ(j), ξ(j), ζ(j),µ(j)
)

;





k̃(j+1)

k̂(j+1)

f(j+1)



 = argmin
k̃,k̂,f

L
(

k̃, k̂, f
∣

∣̃f(j+1), f̂(j+1), k(j+1);λ(j), ξ(j), ζ(j),µ(j)
)

;









λ(j+1)

ξ(j+1)

ζ(j+1)

µ(j+1)









=









λ(j)

ξ(j)

ζ(j)

µ(j)









− ω









f̃(j+1) − f(j+1)

f̂(j+1) − f(j+1)

k̃(j+1) − k(j+1)

k̂(j+1) − k(j+1)









;

end
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Minimization Algorithm
Formulation (continued)

Most of the minimizations above have closed form

f̃(j+1) = PΩf

(

f(j) + λ(j)

ω

)

k(j+1) =
(

2A∗
f(j)

Af(j) + 2(γ + ω)I
)−1

(

2A∗
f(j)

gδ + 2γkǫ − ζ(j) + ωk̃(j) − µ(j) + ωk̂(j)
)

k̃(j+1) = PΩk

(

k(j+1) + ζ(j)

ω

)

f(j+1) =
(

2A∗
k(j+1)Ak(j+1) + 2(αE + 2ω)I

)−1
(

2A∗
k(j+1)gδ − λ(j) + ωf̃(j+1) − ξ(j) + ωf̂(j+1)

)



30

Semi-blind
regularization for

inverse problems

Introduction

The problem at hand

Inspiring work

The continuous model

Formulation

Theoretical analysis

Minimization Algorithm

14 Formulation

Theoretical analysis

Numerical Example

Implementation of SeB-A

Constraints

Experiment

Conclusions & Future

work

Dep. of Mathematical Sc.

Kent State Univeristy

Ohio, USA

Minimization Algorithm
Formulation (continued)

Most of the minimizations above have closed form

f̃(j+1) = PΩf

(

f(j) + λ(j)

ω

)

k(j+1) =
(

2A∗
f(j)

Af(j) + 2(γ + ω)I
)−1

(

2A∗
f(j)

gδ + 2γkǫ − ζ(j) + ωk̃(j) − µ(j) + ωk̂(j)
)

k̃(j+1) = PΩk

(

k(j+1) + ζ(j)

ω

)

f(j+1) =
(

2A∗
k(j+1)Ak(j+1) + 2(αE + 2ω)I

)−1
(

2A∗
k(j+1)gδ − λ(j) + ωf̃(j+1) − ξ(j) + ωf̂(j+1)

)

Whereas the minimizations w.r.t. f̂ and k̂ does not

f̂(j+1) = argmin
f̂

∥

∥

∥̂f
∥

∥

∥

TV
+

ω

2αTV

∥

∥

∥

∥

∥

f̂ −

(

f(j) +
ξ(j)

ω

)∥

∥

∥

∥

∥

2

k̂(j+1) = argmin
k̂

∥

∥

∥k̂
∥

∥

∥

TV
+

ω

2β

∥

∥

∥

∥

k̂ −

(

k(j+1) +
µ(j)

ω

)∥

∥

∥

∥

2
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Minimization Algorithm
Formulation (continued)

Most of the minimizations above have closed form

f̃(j+1) = PΩf

(

f(j) + λ(j)

ω

)

k(j+1) =
(

2A∗
f(j)

Af(j) + 2(γ + ω)I
)−1

(

2A∗
f(j)

gδ + 2γkǫ − ζ(j) + ωk̃(j) − µ(j) + ωk̂(j)
)

k̃(j+1) = PΩk

(

k(j+1) + ζ(j)

ω

)

f(j+1) =
(

2A∗
k(j+1)Ak(j+1) + 2(αE + 2ω)I

)−1
(

2A∗
k(j+1)gδ − λ(j) + ωf̃(j+1) − ξ(j) + ωf̂(j+1)

)

Whereas the minimizations w.r.t. f̂ and k̂ does not

f̂(j+1) = argmin
f̂

∥

∥

∥̂f
∥

∥

∥

TV
+

ω

2αTV

∥

∥

∥

∥

∥

f̂ −

(

f(j) +
ξ(j)

ω

)∥

∥

∥

∥

∥

2

k̂(j+1) = argmin
k̂

∥

∥

∥k̂
∥

∥

∥

TV
+

ω

2β

∥

∥

∥

∥

k̂ −

(

k(j+1) +
µ(j)

ω

)∥

∥

∥

∥

2

For the resolution of these problems we will have to resort to

iterative methods.
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Minimization Algorithm
Theoretical analysis

We perform the theoretical analysis on the unconstrained

model, i.e., assuming that Ωf = Ωk = R
N . In this case we can

ignore the Lagrangian multipliers λ and ζ and the auxiliary
variables k̃ and f̃.



30

Semi-blind
regularization for

inverse problems

Introduction

The problem at hand

Inspiring work

The continuous model

Formulation

Theoretical analysis

Minimization Algorithm

Formulation

15 Theoretical analysis

Numerical Example

Implementation of SeB-A

Constraints

Experiment

Conclusions & Future

work

Dep. of Mathematical Sc.

Kent State Univeristy

Ohio, USA

Minimization Algorithm
Theoretical analysis

We perform the theoretical analysis on the unconstrained

model, i.e., assuming that Ωf = Ωk = R
N . In this case we can

ignore the Lagrangian multipliers λ and ζ and the auxiliary
variables k̃ and f̃.

The proof of convergence of SeB-A is inspired by [M. Hong,

Z.-Q. Luo, and M. Razaviyayn, SIOPT2016].
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Minimization Algorithm
Theoretical analysis

We perform the theoretical analysis on the unconstrained

model, i.e., assuming that Ωf = Ωk = R
N . In this case we can

ignore the Lagrangian multipliers λ and ζ and the auxiliary
variables k̃ and f̃.

The proof of convergence of SeB-A is inspired by [M. Hong,

Z.-Q. Luo, and M. Razaviyayn, SIOPT2016].

For the proof of convergence we need the following

Assumption
The norm of the iterates f(j) and k(j) generated by SeB-A are
uniformly bounded.
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Minimization Algorithm
Theoretical analysis (continued)

We can now state some preliminary results

Lemma
Let ξ(j),µ(j), f(j), k(j) be the iterations generated by SeB-A.

Then we have
∥

∥

∥ξ
(j+1) − ξ(j)

∥

∥

∥ ≤ C
∥

∥

∥f(j+1) − f(j)
∥

∥

∥ ,

∥

∥

∥µ
(j+1) − µ(j)

∥

∥

∥ ≤ C
∥

∥

∥k̂(j+1) − k̂(j)
∥

∥

∥

where C > 0 is a constant.



30

Semi-blind
regularization for

inverse problems

Introduction

The problem at hand

Inspiring work

The continuous model

Formulation

Theoretical analysis

Minimization Algorithm

Formulation

17 Theoretical analysis

Numerical Example

Implementation of SeB-A

Constraints

Experiment

Conclusions & Future

work

Dep. of Mathematical Sc.

Kent State Univeristy

Ohio, USA

Minimization Algorithm
Theoretical analysis (continued)

Proposition
It holds that

L
(

k(j+1), f(j+1), k̂(j+1), f̂(j+1); ξ(j+1),µ(j+1)
)

− L
(

k(j), f(j), k̂(j), f̂(j); ξ(j),µ(j)
)

≤

(

C2

ω
−

ρ

2

)(

∥

∥

∥f(j+1) − f(j)
∥

∥

∥

2

+
∥

∥

∥k̂(j+1) − k̂(j)
∥

∥

∥

2
)

−
ρ

2

(

∥

∥

∥̂f(j+1) − f̂(j)
∥

∥

∥

2

+
∥

∥

∥k(j+1) − k(j)
∥

∥

∥

2
)

.
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Minimization Algorithm
Theoretical analysis (continued)

Lemma
Let L be the Augmented Lagrangian defined above and

k(j), f(j), k̂(j), f̂(j), ξ(j),µ(j) the iterates generated by SeB-A.

Assume that C2

ω
− ρ

2
< 0,then we have that

lim
j→∞

L
(

k(j), f(j), k̂(j), f̂(j); ξ(j),µ(j)
)

≥ ν,

where ν is the global minimum of Jδ,ǫ
α,β(k, f).
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Minimization Algorithm
Theoretical analysis (continued)

We are now in position to state our main result

Theorem
The iterates generated by SeB-A converge to a limit point

p∗ =
(

k∗, f∗, k̂∗, f̂∗, ξ∗,µ∗

)

. Moreover, the followings hold

(a) p∗ is a stationary point

(b) Assume now that Ωf × Ωk is convex and compact then

lim
j→∞

dist

((

f(j), k(j), f̂(j), k̂(j); ξ(j),µ(j)
)

,Z ∗
)

= 0,

where Z ∗ denotes the set of stationary points and dist the

Euclidean distance between sets and points.
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Numerical Example
Implementation of SeB-A

Before giving a numerical example we discuss the

implementation of the SeB-A algorithm and the construction of

Ωf and Ωk.
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Numerical Example
Implementation of SeB-A

Before giving a numerical example we discuss the

implementation of the SeB-A algorithm and the construction of

Ωf and Ωk.
For the implementation of the SeB-A algorithm we reformulate

following [R.H. Chan, M. Tao, and X. Yuan, SIMS2013] the
minimization of Jδ,ǫ

α,β in another way

(k∗, f∗) = arg min
k̃∈Ωk ,̃f∈Ωf

k̂,̂f,k,f

{

‖B (k, f)− gδ‖
2 + αE ‖f‖2 + αTV

N
∑

i=1

∥

∥

∥̂
fi

∥

∥

∥

+γ ‖k − kǫ‖
2 + β

N
∑

i=1

∥

∥

∥
k̂i

∥

∥

∥
,

k = k̃, f = f̃,Dik = k̂i ,Di f = f̂i

}

,
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Numerical Example
Implementation of SeB-A

Before giving a numerical example we discuss the

implementation of the SeB-A algorithm and the construction of

Ωf and Ωk.
For the implementation of the SeB-A algorithm we reformulate

following [R.H. Chan, M. Tao, and X. Yuan, SIMS2013] the
minimization of Jδ,ǫ

α,β in another way

(k∗, f∗) = arg min
k̃∈Ωk ,̃f∈Ωf

k̂,̂f,k,f

{

‖B (k, f)− gδ‖
2 + αE ‖f‖2 + αTV

N
∑

i=1

∥

∥

∥̂
fi

∥

∥

∥

+γ ‖k − kǫ‖
2 + β

N
∑

i=1

∥

∥

∥
k̂i

∥

∥

∥
,

k = k̃, f = f̃,Dik = k̂i ,Di f = f̂i

}

,

Applying the ADMM algorithm to this reformulation we obtain

the CSeB-A algorithm.
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Numerical Example
Implementation of SeB-A (continued)

Algorithm (CSeB-A)

for j = 0, 1, . . . do




f̃(j+1)

f̂(j+1)

k(j+1)



 = argmin
f̃,̂f,k

L
(

f̃, f̂, k
∣

∣k̃(j), k̂(j), f(j);λ(j), ξ(j), ζ(j),µ(j)
)

;





k̃(j+1)

k̂(j+1)

f(j+1)



 = argmin
k̃,k̂,f

L
(

k̃, k̂, f
∣

∣̃f(j+1), f̂(j+1), k(j+1);λ(j), ξ(j), ζ(j),µ(j)
)

;









λ(j+1)

ξ(j+1)

ζ(j+1)

µ(j+1)









=









λ(j)

ξ(j)

ζ(j)

µ(j)









− ω









f̃(j+1) − f(j+1)

f̂(j+1) − Df(j+1)

k̃(j+1) − k(j+1)

k̂(j+1) − Dk(j+1)









;

end
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Numerical Example
Implementation of SeB-A (continued)

Algorithm (CSeB-A)

for j = 0, 1, . . . do




f̃(j+1)

f̂(j+1)

k(j+1)



 = argmin
f̃,̂f,k

L
(

f̃, f̂, k
∣

∣k̃(j), k̂(j), f(j);λ(j), ξ(j), ζ(j),µ(j)
)

;





k̃(j+1)

k̂(j+1)

f(j+1)



 = argmin
k̃,k̂,f

L
(

k̃, k̂, f
∣

∣̃f(j+1), f̂(j+1), k(j+1);λ(j), ξ(j), ζ(j),µ(j)
)

;









λ(j+1)

ξ(j+1)

ζ(j+1)

µ(j+1)









=









λ(j)

ξ(j)

ζ(j)

µ(j)









− ω









f̃(j+1) − f(j+1)

f̂(j+1) − Df(j+1)

k̃(j+1) − k(j+1)

k̂(j+1) − Dk(j+1)









;

end

The minimizations in CSeB-A are easily computed and all have

a closed form. However, we are not able to provide a rigorous
convergence analysis.
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Numerical Example
Implementation of SeB-A (continued)

f̃(j+1) =PΩf

(

f(j) +
λ(j)

ω

)

, k̃(j+1) = PΩk

(

k(j+1) +
ζ(j)

ω

)

f̂
(j+1)
i =

(

Di f
(j) + 1

ω
ξ
(j)
i

)

∥

∥

∥Di f(j) +
1
ω
ξ
(j)
i

∥

∥

∥

◦

(∥

∥

∥

∥

Di f
(j) +

1

ω
ξ
(j)
i

∥

∥

∥

∥

−
αTV

ω

)

+

k(j+1) =
(

2A∗
f(j)Af(j) + (2γ + ω)I + ωD∗D

)−1

·
(

2A∗
f(j)gδ + 2γkǫ − ζ(j) + ωk̃(j) − D∗µ(j) + ωD∗k̂(j)

)

k̂
(j+1)
i =

(

Dik
(j+1) + 1

ω
µ
(j)
i

)

∥

∥

∥Dik(j+1) + 1
ω
µ
(j)
i

∥

∥

∥

◦

(∥

∥

∥

∥

Dik
(j+1) +

1

ω
µ

(j)
i

∥

∥

∥

∥

−
β

ω

)

+

f(j+1) =
(

2A∗
k(j+1)Ak(j+1) + 2(αE + ω)I + ωD∗D

)−1

·
(

2A∗
k(j+1)gδ − λ+ ωf̃(j+1) − D∗ξ(j) + ωD∗f̂(j+1)

)



30

Semi-blind
regularization for

inverse problems

Introduction

The problem at hand

Inspiring work

The continuous model

Formulation

Theoretical analysis

Minimization Algorithm

Formulation

Theoretical analysis

Numerical Example

Implementation of SeB-A

23 Constraints

Experiment

Conclusions & Future

work

Dep. of Mathematical Sc.

Kent State Univeristy

Ohio, USA

Numerical Example
Constraints

We are going to consider the framework of space invariant
image deblurring.
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Numerical Example
Constraints

We are going to consider the framework of space invariant
image deblurring.

◮ k →PSF;
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Numerical Example
Constraints

We are going to consider the framework of space invariant
image deblurring.

◮ k →PSF;

◮ g →Blurred image;
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Numerical Example
Constraints

We are going to consider the framework of space invariant
image deblurring.

◮ k →PSF;

◮ g →Blurred image;

◮ f →True image;
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Numerical Example
Constraints

We are going to consider the framework of space invariant

image deblurring.

◮ k →PSF;

◮ g →Blurred image;

◮ f →True image;

◮ B(·, ·) →Convolution1.

1For simplicity we impose periodic boundary conditions
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Numerical Example
Constraints

We are going to consider the framework of space invariant

image deblurring.

◮ k →PSF;

◮ g →Blurred image;

◮ f →True image;

◮ B(·, ·) →Convolution1.

Thus we are going to impose nonnegativity and flux
constraints.

1For simplicity we impose periodic boundary conditions
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Numerical Example
Constraints (continued)

We briefly discuss the flux constraint.
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Numerical Example
Constraints (continued)

We briefly discuss the flux constraint.

For the blurring phenomenon it holds

(i) ki ≥ 0;

(ii) flux (k) := 1tk = 1, where 1 = (1, 1, . . . , 1)t
.
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Numerical Example
Constraints (continued)

We briefly discuss the flux constraint.

For the blurring phenomenon it holds

(i) ki ≥ 0;

(ii) flux (k) := 1tk = 1, where 1 = (1, 1, . . . , 1)t
.

Then we have

◮ Ak has no negative entries;

◮ the row-sum and column-sum of Ak is 1;

◮ If y = Akz, then flux (y) = flux (z).
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Numerical Example
Constraints (continued)

We briefly discuss the flux constraint.

For the blurring phenomenon it holds

(i) ki ≥ 0;

(ii) flux (k) := 1tk = 1, where 1 = (1, 1, . . . , 1)t
.

Then we have

◮ Ak has no negative entries;

◮ the row-sum and column-sum of Ak is 1;

◮ If y = Akz, then flux (y) = flux (z).

Then it holds

flux (f) = flux (g)



30

Semi-blind
regularization for

inverse problems

Introduction

The problem at hand

Inspiring work

The continuous model

Formulation

Theoretical analysis

Minimization Algorithm

Formulation

Theoretical analysis

Numerical Example

Implementation of SeB-A

24 Constraints

Experiment

Conclusions & Future

work

Dep. of Mathematical Sc.

Kent State Univeristy

Ohio, USA

Numerical Example
Constraints (continued)

We briefly discuss the flux constraint.

For the blurring phenomenon it holds

(i) ki ≥ 0;

(ii) flux (k) := 1tk = 1, where 1 = (1, 1, . . . , 1)t
.

Then we have

◮ Ak has no negative entries;

◮ the row-sum and column-sum of Ak is 1;

◮ If y = Akz, then flux (y) = flux (z).

Then it holds

flux (f) = flux (g)

In the noisy case: gδ = g + η. Then

flux (gδ) = flux (g) + flux (η) ≈ flux (g) + 0 = flux (g) .
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Numerical Example
Constraints (continued)

We set

Ωf = {x : xi ≥ 0} ∩ {x : flux (x) = flux (gδ)} = Ω0 ∩ Ωgδ

�ux

Ωk = {x : xi ≥ 0} ∩ {x : flux (x) = 1} = Ω0 ∩ Ω1
�ux
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Numerical Example
Constraints (continued)

We set

Ωf = {x : xi ≥ 0} ∩ {x : flux (x) = flux (gδ)} = Ω0 ∩ Ωgδ

�ux

Ωk = {x : xi ≥ 0} ∩ {x : flux (x) = 1} = Ω0 ∩ Ω1
�ux

Since the projection on either Ωf or Ωk is not trivial we will split

the constraints and use two auxiliary variables in the ADMM

algorithm.
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Numerical Example
Constraints (continued)

We set

Ωf = {x : xi ≥ 0} ∩ {x : flux (x) = flux (gδ)} = Ω0 ∩ Ωgδ

�ux

Ωk = {x : xi ≥ 0} ∩ {x : flux (x) = 1} = Ω0 ∩ Ω1
�ux

Since the projection on either Ωf or Ωk is not trivial we will split

the constraints and use two auxiliary variables in the ADMM

algorithm.

The projections into Ω
gδ

�ux

and Ω1
�ux

can be computed in O(N)
operations.
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Numerical Example
Constraints (continued)

We set

Ωf = {x : xi ≥ 0} ∩ {x : flux (x) = flux (gδ)} = Ω0 ∩ Ωgδ

�ux

Ωk = {x : xi ≥ 0} ∩ {x : flux (x) = 1} = Ω0 ∩ Ω1
�ux

Since the projection on either Ωf or Ωk is not trivial we will split

the constraints and use two auxiliary variables in the ADMM

algorithm.

The projections into Ω
gδ

�ux

and Ω1
�ux

can be computed in O(N)
operations.

In particular

PΩ
gδ
�ux

(x) =
flux (gδ)− flux (x)

N
1 + x

PΩ1
�ux

(x) =
1 − flux (x)

N
1 + x
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Numerical Example
Experiment

f log (|k|)

gδ

δ = 0.01 ‖g‖
log (|kǫ|)

ǫ = 0.8 ‖k‖
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Numerical Example
Experiment (continued)

BID-ADMM TV CSeB-A

SNR f 11.924 12.844 23.268

SNR k 1.597 −− 22.925

◮ BID-ADMM: [M. S. Almeida and M. A. Figueiredo,

IEEE2013];

◮ TV: f∗ = argminf∈Ωf
‖B(kǫ, f)− gδ‖

2 + αE ‖f‖2 + αTV ‖f‖TV .
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Numerical Example
Experiment (continued)

BID-ADMM CSeB-A

BID-ADMM CSeB-A TV
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Numerical Example
Experiment (continued)

True BID-ADMM

CSeB-A TV
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Numerical Example
Experiment (continued)

True BID-ADMM

CSeB-A TV
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Conclusions & Future work

We now draw some conclusions
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Conclusions & Future work

We now draw some conclusions

◮ We have constructed a functional that couples the

available informations on the parameter k and the solution
f ;
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Conclusions & Future work

We now draw some conclusions

◮ We have constructed a functional that couples the

available informations on the parameter k and the solution
f ;

◮ We have proven several properties of the non-convex and

non-smooth constructed functional;
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Conclusions & Future work

We now draw some conclusions

◮ We have constructed a functional that couples the

available informations on the parameter k and the solution
f ;

◮ We have proven several properties of the non-convex and

non-smooth constructed functional;

◮ We have proposed an efficient algorithm to compute a

stationary point of (the discrete version of) J
δ,ǫ
α,β(k, f) and

proven its convergence.
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We now draw some conclusions

◮ We have constructed a functional that couples the

available informations on the parameter k and the solution
f ;

◮ We have proven several properties of the non-convex and

non-smooth constructed functional;

◮ We have proposed an efficient algorithm to compute a

stationary point of (the discrete version of) J
δ,ǫ
α,β(k, f) and

proven its convergence.

Future work includes
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We now draw some conclusions

◮ We have constructed a functional that couples the

available informations on the parameter k and the solution
f ;

◮ We have proven several properties of the non-convex and

non-smooth constructed functional;

◮ We have proposed an efficient algorithm to compute a

stationary point of (the discrete version of) J
δ,ǫ
α,β(k, f) and

proven its convergence.

Future work includes

◮ Remove the assumption on the boundness of the iterates;
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We now draw some conclusions

◮ We have constructed a functional that couples the

available informations on the parameter k and the solution
f ;

◮ We have proven several properties of the non-convex and

non-smooth constructed functional;

◮ We have proposed an efficient algorithm to compute a

stationary point of (the discrete version of) J
δ,ǫ
α,β(k, f) and

proven its convergence.

Future work includes

◮ Remove the assumption on the boundness of the iterates;

◮ Provide rule choices for the parameters;
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Conclusions & Future work

We now draw some conclusions

◮ We have constructed a functional that couples the

available informations on the parameter k and the solution
f ;

◮ We have proven several properties of the non-convex and

non-smooth constructed functional;

◮ We have proposed an efficient algorithm to compute a

stationary point of (the discrete version of) J
δ,ǫ
α,β(k, f) and

proven its convergence.

Future work includes

◮ Remove the assumption on the boundness of the iterates;

◮ Provide rule choices for the parameters;

◮ Extend to non-convex priors.



Thank you for your attention!
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