A Semi-blind regularization algorithm for inverse problems with application to image deblurring Computational Methods for Inverse Problems in Imaging

23rd May 2018

A. Buccini 1 M. Donatelli ${ }^{2} \quad$ R. Ramlau ${ }^{3}$

${ }^{1}$ Department of Mathematical Sciences, Kent State Univeristy, Kent OH, USA
${ }^{2}$ Department of Science and High Technology, University of Insubria, Como, Italy
${ }^{3}$ Industrial Mathematics Institute, Johannes Kepler University Linz, Linz, Austria

Outline

Semi-blind regularization for inverse problems

Introduction
The problem at hand
Inspiring work
The continuous model
Formulation
Theoretical analysis
Minimization Algorithm
Formulation
Theoretical analysis
Numerical Example
Implementation of $\mathrm{SeB}-\mathrm{A}$
Constraints
Experiment
Conclusions \& Future work
Implementation of SeB-A
Constraints
Experiment
Conclusions \& Future work

Introduction

The problem at hand

We consider inverse problems of the from

$$
B(k, f)=g .
$$

Semi-blind regularization for inverse problems

Introduction
The problem at hand
Inspiring work
The continuous model
Formulation
Theoretical analysis
Minimization Algorithm
Formulation
Theoretical analysis
Numerical Example
Implementation of $\mathrm{SeB}-\mathrm{A}$
Constraints
Experiment
Conclusions \& Future work

The problem at hand

We consider inverse problems of the from

$$
B(k, f)=g .
$$

- f : desired solution;

Semi-blind regularization for inverse problems

Introduction
The problem at hand
Inspiring wark
The continuous model
Formulation
Theoretical analysis
Minimization Algorithm
Formulation
Theoretical analysis
Numerical Example
Implementation of SeB -A
Constraints
Experiment
Conclusions \& Future work

Dep. of Mathematical Sc. Kent State Univeristy

The problem at hand

We consider inverse problems of the from

$$
B(k, f)=g .
$$

- f : desired solution;
- g : the measured data;

Semi-blind regularization for inverse problems

Introduction
The problem at hand
Inspiring work
The continuous model
Formulation
Theoretical analysis
Minimization Algorithm
Formulation
Theoretical analysis
Numerical Example
Implementation of SeB -A
Constraints
Experiment
Conclusions \& Future work

The problem at hand

We consider inverse problems of the from

$$
B(k, f)=g .
$$

- f: desired solution;
- g : the measured data;
- k: variable on which the operator B depends, e.g., integral kernel.

Semi-blind regularization for inverse problems

Introduction
The problem at hand
Inspiring wark
The continuous model
Formulation
Theoretical analysis
Minimization Algorithm
Formulation
Theoretical analysis
Numerical Example
Implementation of SeB-A
Constraints
Experiment
Conclusions \& Future work

Introduction

The problem at hand (continued)

We assume that both g and k are affected by (Gaussian) noise.

Semi-blind regularization for inverse problems

Introduction
The problem at hand
Inspiring work
The continuous model
Formulation
Theoretical analysis
Minimization Algorithm
Formulation
Theoretical analysis
Numerical Example
Implementation of $\mathrm{SeB}-\mathrm{A}$
Constraints
Experiment
Conclusions \& Future work

Introduction

The problem at hand (continued)

We assume that both g and k are affected by (Gaussian) noise.

Introduction
The problem at hand
Thus the problem becomes

$$
B\left(k_{\epsilon}, f\right)=g_{\delta},
$$

where

$$
\left\|k-k_{\epsilon}\right\|<\epsilon \quad \text { and } \quad\left\|g-g_{\delta}\right\|<\delta .
$$

Semi-blind regularization for inverse problems

Inspiring work
The continuous model
Formulation
Theoretical analysis
Minimization Algorithm
Formulation
Theoretical analysis
Numerical Example
implementation of $\mathrm{SeB}-\mathrm{A}$

Constraints
Experiment
Conclusions \& Future work

Introduction

The problem at hand (continued)

We assume that both g and k are affected by (Gaussian) noise.

Thus the problem becomes

$$
B\left(k_{\epsilon}, f\right)=g_{\delta},
$$

where

$$
\left\|k-k_{\epsilon}\right\|<\epsilon \quad \text { and } \quad\left\|g-g_{\delta}\right\|<\delta .
$$

We would like to construct a method that simultaneously recovers f and k.

Semi-blind regularization for inverse problems

Introduction
The problem at hand
Inspiring work
The continuous model
Formulation
Theoretical analysis
Minimization Algorithm
Formulation
Theoretical analysis
Numerical Example
Implementation of SeB-A
Constraints
Experiment
Conclusions \& Future work

Introduction

The problem at hand (continued)

We assume that both g and k are affected by (Gaussian) noise.
Introduction
The problem at hand
Thus the problem becomes

$$
B\left(k_{\epsilon}, f\right)=g_{\delta},
$$

where

$$
\left\|k-k_{\epsilon}\right\|<\epsilon \quad \text { and } \quad\left\|g-g_{\delta}\right\|<\delta .
$$

We would like to construct a method that simultaneously recovers f and k.

We refer to this kind of inverse problem as semi-blind.
Inspiring work
The continuous model
Formulation
Theoretical analysis
Minimization Algorithm
Formulation
Theoretical analysis
Numerical Example
Implementation of SeB-A
Constraints
Experiment
Conclusions \& Future work

Introduction

The problem at hand (continued)

Blind and semi-blind problems have been largely investigated, see, e.g., Almeida, Bardsley, Beck, Ben-Tal, Bertero, Bioucas-Dias, Bleyer, Boccacci, Bonettini, Brinicombe, Chan, Cornelio, Dykes, Figueiredo, Fish, He, Jefferies, Kanzow, La Camera, Marquina, Nagy, Ng, Oliveira, Osher, Pesquet, Pike, Plemmons, Porta, Prato, Ramlau, Rebegoldi, Reichel, Soodhalter, Walker, Wong, ...

Introduction
The problem at hand
Inspiring work
The continuous model
Formulation
Theoretical analysis
Minimization Algorithm
Formulation
Theoretical analysis
Numerical Example
Implementation of SeB-A
Constraints
Experiment
Conclusions \& Future work

Introduction

The problem at hand (continued)

Blind and semi-blind problems have been largely investigated, see, e.g., Almeida, Bardsley, Beck, Ben-Tal, Bertero, Bioucas-Dias, Bleyer, Boccacci, Bonettini, Brinicombe, Chan, Cornelio, Dykes, Figueiredo, Fish, He, Jefferies, Kanzow, La Camera, Marquina, Nagy, Ng, Oliveira, Osher, Pesquet, Pike, Plemmons, Porta, Prato, Ramlau, Rebegoldi, Reichel, Soodhalter, Walker, Wong, ...

In particular, we would like to propose a model and an algorithm for semi-blind regularization starting from the work in [I.R. Bleyer and R. Ramlau, IP2013-2015].

Introduction
The problem at hand
Inspiring work
The continuous model
Formulation
Theoretical analysis
Minimization Algorithm
Formulation
Theoretical analysis
Numerical Example
Implementation of SeB-A
Constraints
Experiment
Conclusions \& Future work

Introduction

Inspiring work

We now briefly describe the approach and the results in [I.R.
Semi-blind regularization for inverse problems Bleyer and R. Ramlau, IP2013-2015].

Introduction
The problem at hand Inspiring work

The continuous model
Formulation
Theoretical analysis
Minimization Algorithm
Formulation
Theoretical analysis
Numerical Example
Implementation of SeB -A
Constraints
Experiment
Conclusions \& Future work

Introduction

Inspiring work

We now briefly describe the approach and the results in [I.R. Bleyer and R. Ramlau, IP2013-2015].

They considered the following minimization problem

$$
\begin{aligned}
\left(k^{*}, f^{*}\right) & =\arg \min _{k, f}\left\|B(k, f)-g_{\delta}\right\|^{2}+\gamma\left\|k-k_{\epsilon}\right\|^{2}+\alpha\|L f\|^{2}+\beta\|k\|_{1} \\
& =\arg \min _{k, f} \tilde{J}_{\alpha, \beta}^{\delta, \epsilon}(k, f)
\end{aligned}
$$

where L is a continuously invertible linear operator.

Semi-blind regularization for inverse problems

Introduction
The problem at hand
Inspiring work
The continuous model
Formulation
Theoretical analysis
Minimization Algorithm
Formulation
Theoretical analysis
Numerical Example
Implementation of $\mathrm{SeB}-\mathrm{A}$
Constraints
Experiment
Conclusions \& Future work

Introduction

Inspiring work

We now briefly describe the approach and the results in [I.R. Bleyer and R. Ramlau, IP2013-2015].

They considered the following minimization problem

$$
\begin{aligned}
\left(k^{*}, f^{*}\right) & =\arg \min _{k, f}\left\|B(k, f)-g_{\delta}\right\|^{2}+\gamma\left\|k-k_{\epsilon}\right\|^{2}+\alpha\|L f\|^{2}+\beta\|k\|_{1} \\
& =\arg \min _{k, f} \tilde{J}_{\alpha, \beta}^{\delta, \epsilon}(k, f),
\end{aligned}
$$

where L is a continuously invertible linear operator.
In [I.R. Bleyer and R. Ramlau, IP2013] they proved that

- The minimization above is well posed;
- The minima are stable;
- The minimization above is a regularization method if the parameter are chosen accordingly to the noise.

Introduction
The problem at hand
Inspiring work
The continuous model
Formulation
Theoretical analysis
Minimization Algorithm
Formulation
Theoretical analysis
Numerical Example
Implementation of $\mathrm{SeB}-\mathrm{A}$
Constraints
Experiment
Conclusions \& Future work

Introduction

Inspiring work (continued)

In [I.R. Bleyer and R. Ramlau, IP2015] they developed an algorithm for computing stationary point of $\tilde{J}_{\alpha, \beta}^{\delta, \epsilon}$.

Semi-blind regularization for inverse problems

Introduction
The problem at hand
Inspiring work
The continuous model
Formulation
Theoretical analysis
Minimization Algorithm
Formulation
Theoretical analysis
Numerical Example
Implementation of $\mathrm{SeB}-\mathrm{A}$
Constraints
Experiment
Conclusions \& Future work

Semi-blind regularization for inverse problems
In [I.R. Bleyer and R. Ramlau, IP2015] they developed an algorithm for computing stationary point of $\tilde{J}_{\alpha, \beta}^{\delta, \epsilon}$.

Introduction
The problem at hand
Inspiring work
The continuous model
Formulation
Theoretical analysis
Minimization Algorithm
Formulation
Theoretical analysis
Numerical Example
Implementation of SeB-A
Constraints
Experiment
Conclusions \& Future work

Semi-blind regularization for inverse problems
In [I.R. Bleyer and R. Ramlau, IP2015] they developed an algorithm for computing stationary point of $\tilde{J}_{\alpha, \beta}^{\delta, \epsilon}$.

Introduction
The problem at hand
Inspiring work
The continuous model
Formulation
Theoretical analysis
Minimization Algorithm
Formulation
Theoretical analysis
Numerical Example
Implementation of SeB-A
Constraints
Experiment
Conclusions \& Future work

They proved that there exist a subsequence $\left\{\left(k^{\left(j_{i}\right)}, f^{\left(j_{i}\right)}\right)\right\}_{j_{i}}$ that converges to a stationary point of $\tilde{J}_{\alpha, \beta}^{\delta, \epsilon}$.

The continuous model

Formulation

Semi-blind regularization for inverse problems
We now extend the results of [I.R. Bleyer and R. Ramlau, IP2013-2015] to a more general functional.

Introduction
The problem at hand
Inspiring work
The continuous model
Formulation
Theoretical analysis
Minimization Algorithm
Formulation
Theoretical analysis
Numerical Example
Implementation of SeB -A
Constraints
Experiment
Conclusions \& Future work

The continuous model

Formulation

We now extend the results of [I.R. Bleyer and R. Ramlau, IP2013-2015] to a more general functional.

We consider the functional

$$
\begin{aligned}
J_{\alpha, \beta}^{\delta, \epsilon}(k, f)= & \left\|B(k, f)-g_{\delta}\right\|^{2}+\gamma\left\|k-k_{\epsilon}\right\|^{2} \\
& +\alpha^{\mathrm{E}}\|f\|^{2}+\alpha^{\mathrm{R}} \mathcal{R}_{f}(f)+\beta \mathcal{R}_{k}(k),
\end{aligned}
$$

where $\mathcal{R}_{f}(f)$ and $\mathcal{R}_{k}(k)$ are convex regularization term.

Introduction
The problem at hand
Inspiring work
The continuous model
Formulation
Theoretical analysis
Minimization Algorithm
Formulation
Theoretical analysis
Numerical Example
Implementation of SeB-A
Constraints
Experiment
Conclusions \& Future work

The continuous model

Formulation

We now extend the results of [I.R. Bleyer and R. Ramlau, IP2013-2015] to a more general functional.

We consider the functional

$$
\begin{aligned}
J_{\alpha, \beta}^{\delta, \epsilon}(k, f)= & \left\|B(k, f)-g_{\delta}\right\|^{2}+\gamma\left\|k-k_{\epsilon}\right\|^{2} \\
& +\alpha^{\mathrm{E}}\|f\|^{2}+\alpha^{\mathrm{R}} \mathcal{R}_{f}(f)+\beta \mathcal{R}_{k}(k),
\end{aligned}
$$

where $\mathcal{R}_{f}(f)$ and $\mathcal{R}_{k}(k)$ are convex regularization term.
In the following we will assume that $f, k \in H^{1}$ and we will set

$$
\mathcal{R}_{f}(\cdot)=\mathcal{R}_{k}(\cdot)=\|\cdot\|_{T V} .
$$

Introduction
The problem at hand
Inspiring work
The continuous model
Formulation
Theoretical analysis
Minimization Algorithm
Formulation
Theoretical analysis
Numerical Example
Implementation of SeB-A
Constraints
Experiment
Conclusions \& Future work

The continuous model

Formulation

We now extend the results of [I.R. Bleyer and R. Ramlau, IP2013-2015] to a more general functional.

We consider the functional

$$
\begin{aligned}
J_{\alpha, \beta}^{\delta, \epsilon}(k, f)= & \left\|B(k, f)-g_{\delta}\right\|^{2}+\gamma\left\|k-k_{\epsilon}\right\|^{2} \\
& +\alpha^{\mathrm{E}}\|f\|^{2}+\alpha^{\mathrm{R}} \mathcal{R}_{f}(f)+\beta \mathcal{R}_{k}(k),
\end{aligned}
$$

where $\mathcal{R}_{f}(f)$ and $\mathcal{R}_{k}(k)$ are convex regularization term.
In the following we will assume that $f, k \in H^{1}$ and we will set

$$
\mathcal{R}_{f}(\cdot)=\mathcal{R}_{k}(\cdot)=\|\cdot\|_{T V} .
$$

Consequently we use the following notation

$$
\alpha^{\mathrm{R}}=\alpha^{\mathrm{TV}}
$$

The continuous model

Theoretical analysis

We now state some theoretical property of $J_{\alpha, \beta}^{\delta, \epsilon}(k, f)$.
Semi-blind regularization for inverse problems

Introduction
The problem at hand
Inspiring work
The continuous model
Formulation
Theoretical analysis
Minimization Algorithm
Formulation
Theoretical analysis
Numerical Example
Implementation of $\mathrm{SeB}-\mathrm{A}$
Constraints
Experiment
Conclusions \& Future work

Dep. of Mathematical Sc. Kent State Univeristy

The continuous model

Theoretical analysis

We now state some theoretical property of $J_{\alpha, \beta}^{\delta, \epsilon}(k, f)$.
Theorem (Existence)
Assume that B is strongly continuous on its domain, then the functional $J_{\alpha, \beta}^{\delta, \epsilon}(f, k)$ has a global minimizer.

Semi-blind regularization for inverse problems

Introduction
The problem at hand
Inspiring work

The continuous model
Formulation
Theoretical analysis
Minimization Algorithm
Formulation
Theoretical analysis
Numerical Example
Implementation of $\mathrm{SeB}-\mathrm{A}$
Constraints
Experiment
Conclusions \& Future work

The continuous model

Theoretical analysis

We now state some theoretical property of $J_{\alpha, \beta}^{\delta, \epsilon}(k, f)$.
Theorem (Existence)
Assume that B is strongly continuous on its domain, then the functional $J_{\alpha, \beta}^{\delta, \epsilon}(f, k)$ has a global minimizer.

Theorem (Stability)

With the same notation and assumptions as above, let α^{E}, $\alpha^{\mathrm{TV}}, \beta$, and γ be fixed. Let $\left(g_{\delta_{j}}\right)_{j}$ and $\left(k_{\epsilon_{j}}\right)_{j}$ be sequences such that $g_{\delta_{j}} \rightarrow g_{\delta}$ and $k_{\epsilon_{j}} \rightarrow k_{\epsilon}$, let $\left(k_{j}, f_{j}\right)$ be minimizers obtained with data $g_{\delta_{j}}, k_{\epsilon_{j}}$. Then there exists a convergent subsequence of $\left(k_{j}, f_{j}\right)$ and the limit of every subsequence is a minimizer of $J_{\alpha, \beta}^{\delta, \epsilon}$.

Introduction
The problem at hand
Inspiring work

The continuous model
Formulation
Theoretical analysis
Minimization Algorithm
Formulation
Theoretical analysis
Numerical Example
Implementation of $\mathrm{SeB}-\mathrm{A}$
Constraints
Experiment
Conclusions \& Future work

The continuous model

Theoretical analysis

We first define the concept of minimum norm solution in our framework

Definition

The minimum norm solution of $B\left(k_{0}, f\right)=g_{0}$ is

$$
f^{\dagger}=\arg \min _{f \in H^{1}}\left\{\|f\|^{2}+\|f\|_{T V}: B\left(k_{0}, f\right)=g_{0}\right\} .
$$

Introduction
The problem at hand
Inspiring work
The continuous model
Formulation
Theoretical analysis
Minimization Algorithm
Formulation
Theoretical analysis
Numerical Example
Implementation of $\mathrm{SeB}-\mathrm{A}$
Constraints
Experiment
Conclusions \& Future work

The continuous model

Theoretical analysis

Theorem (Regularization property)

Let $\left(g_{\delta_{j}}\right)_{j}$ and $\left(k_{\epsilon_{j}}\right)_{j}$ be sequences such that

$$
\left\|g_{\delta_{j}}-g_{0}\right\|<\delta_{j} \text { and }\left\|k_{\epsilon_{j}}-k_{0}\right\|<\epsilon_{j}
$$

and such that $\delta_{j}, \epsilon_{j} \rightarrow 0$ as $j \rightarrow \infty$. Let $\alpha_{j}^{\mathrm{E}}, \alpha_{j}^{\mathrm{TV}}$, and β_{j} be sequences such that $\alpha_{j}^{\mathrm{E}}, \alpha_{j}^{\mathrm{TV}}, \beta_{j} \rightarrow 0$ as $j \rightarrow \infty$, moreover, assume that it holds
$\lim _{j \rightarrow \infty} \frac{\delta_{j}^{2}+\gamma \epsilon_{j}^{2}}{\alpha_{j}^{\mathrm{E}}}=0, \quad \lim _{j \rightarrow \infty} \frac{\alpha_{j}^{\mathrm{TV}}}{\alpha_{j}^{\mathrm{E}}}=1, \quad \lim _{j \rightarrow \infty} \frac{\beta_{j}}{\alpha_{j}^{\mathrm{E}}}=\eta \quad 0<\eta<\infty$.
Call $\left(k_{j}, f_{j}\right):=\left(k_{\alpha_{j}, \beta_{j}}^{\delta_{j}, \epsilon_{j}}, f_{\alpha_{j}, \beta_{j}}^{\delta_{j}, \epsilon_{j}}\right)$, then there exists a convergent subsequence of $\left(k_{j}, f_{j}\right)$ such that $k_{j} \rightarrow k_{0}$ and the limit of every convergent subsequence of f_{j} is the minimum norm solution of $B\left(k_{0}, f\right)=g_{0}$.

Introduction
The problem at hand
Inspiring work
The continuous model
Formulation
Theoretical analysis
Minimization Algorithm
Formulation
Theoretical analysis
Numerical Example
Implementation of SeB-A
Constraints
Experiment
Conclusions \& Future work

Minimization Algorithm

Formulation

We now formulate an algorithm for computing a stationary point of $J_{\alpha, \beta}^{\delta, \epsilon}(\mathbf{k}, \mathbf{f})$, where, for simplicity, we only consider the finite dimensional case, i.e., we assume that $\mathbf{k}, \mathbf{f} \in \mathbb{R}^{N}$.

Semi-blind regularization for inverse problems

Introduction
The problem at hand
Inspiring work
The continuous model
Formulation
Theoretical analysis
Minimization Algorithm
Formulation
Theoretical analysis
Numerical Example
Implementation of SeB-A
Constraints
Experiment
Conclusions \& Future work

Minimization Algorithm

Formulation

We now formulate an algorithm for computing a stationary point of $J_{\alpha, \beta}^{\delta, \epsilon}(\mathbf{k}, \mathbf{f})$, where, for simplicity, we only consider the finite dimensional case, i.e., we assume that $\mathbf{k}, \mathbf{f} \in \mathbb{R}^{N}$.

We use the Alternating Directions Multipliers Method (ADMM) and provide a proof of convergence.

Semi-blind regularization for inverse problems

Introduction
The problem at hand
Inspiring work
The continuous model
Formulation
Theoretical analysis
Minimization Algorithm
Formulation
Theoretical analysis
Numerical Example
Implementation of SeB-A
Constraints
Experiment
Conclusions \& Future work

Minimization Algorithm

Formulation

We now formulate an algorithm for computing a stationary point of $J_{\alpha, \beta}^{\delta, \epsilon}(\mathbf{k}, \mathbf{f})$, where, for simplicity, we only consider the finite dimensional case, i.e., we assume that $\mathbf{k}, \mathbf{f} \in \mathbb{R}^{N}$.

We use the Alternating Directions Multipliers Method (ADMM) and provide a proof of convergence.

We impose some constraints on the solution, i.e., we impose that $(\mathbf{k}, \mathbf{f}) \in \Omega_{\mathbf{k}} \times \Omega_{\mathbf{f}}$.

Semi-blind regularization for inverse problems

Introduction
The problem at hand
Inspiring work
The continuous model
Formulation
Theoretical analysis
Minimization Algorithm
Formulation
Theoretical analysis
Numerical Example
Implementation of SeB-A
Constraints
Experiment
Conclusions \& Future work

Minimization Algorithm

Formulation

We now formulate an algorithm for computing a stationary point of $J_{\alpha, \beta}^{\delta, \epsilon}(\mathbf{k}, \mathbf{f})$, where, for simplicity, we only consider the finite dimensional case, i.e., we assume that $\mathbf{k}, \mathbf{f} \in \mathbb{R}^{N}$.

We use the Alternating Directions Multipliers Method (ADMM) and provide a proof of convergence.

We impose some constraints on the solution, i.e., we impose that $(\mathbf{k}, \mathbf{f}) \in \Omega_{\mathbf{k}} \times \Omega_{\mathbf{f}}$.

Thus we have to solve

$$
\begin{aligned}
\left(\mathbf{k}^{*}, \mathbf{f}^{*}\right)=\arg \min _{\mathbf{k} \in \Omega_{\mathbf{k},}, f \in \Omega_{\mathrm{f}}} & \left\|B(\mathbf{k}, \mathbf{f})-\mathbf{g}_{\delta}\right\|^{2}+\gamma\left\|\mathbf{k}-\mathbf{k}_{\epsilon}\right\|^{2} \\
& +\alpha^{\mathrm{E}}\|\mathbf{f}\|^{2}+\alpha^{\mathrm{TV}}\|\mathbf{f}\|_{T V}+\beta\|\mathbf{k}\|_{T V} .
\end{aligned}
$$

Minimization Algorithm

Formulation (continued)

We rewrite the minimization problem in a more useful way

$$
\begin{gathered}
\left(\mathbf{k}^{*}, \mathbf{f}^{*}\right)=\arg \min _{\substack{\tilde{\mathbf{k}} \in \Omega_{\mathbf{k}}, \tilde{\mathbf{f}} \in \Omega_{\mathbf{f}} \\
\hat{\mathbf{k}}, \hat{\mathbf{f}}, \mathbf{k}, \mathbf{f}}}\left\{\left\|B(\mathbf{k}, \mathbf{f})-\mathbf{g}_{\delta}\right\|^{2}+\alpha^{\mathrm{E}}\|\mathbf{f}\|^{2}+\alpha^{\mathrm{TV}}\|\hat{\mathbf{f}}\|_{T V}\right. \\
+\gamma\left\|\mathbf{k}-\mathbf{k}_{\epsilon}\right\|^{2}+\beta\|\hat{\mathbf{k}}\|_{T V} \\
\mathbf{k}=\tilde{\mathbf{k}}, \mathbf{f}=\tilde{\mathbf{f}}, \mathbf{k}=\hat{\mathbf{k}}, \mathbf{f}=\hat{\mathbf{f}}\}
\end{gathered}
$$

Semi-blind regularization for inverse problems

Introduction
The problem at hand
Inspiring work
The continuous model
Formulation
Theoretical analysis
Minimization Algorithm
Formulation
Theoretical analysis
Numerical Example
Implementation of SeB-A
Constraints
Experiment
Conclusions \& Future work

Minimization Algorithm

Formulation (continued)

We rewrite the minimization problem in a more useful way

The associated Augmented Lagrangian is
$\mathcal{L}(\tilde{\mathbf{f}}, \hat{\mathbf{f}}, \mathbf{f}, \tilde{\mathbf{k}}, \hat{\mathbf{k}}, \mathbf{k} ; \lambda, \boldsymbol{\xi}, \zeta, \mu)$

$$
=\left\|\boldsymbol{B}(\mathbf{k}, \mathbf{f})-\mathbf{g}_{\delta}\right\|^{2}+\alpha^{\mathrm{E}}\|\mathbf{f}\|^{2}+\alpha^{\mathrm{TV}}\|\hat{\mathbf{f}}\|_{T V}+\gamma\left\|\mathbf{k}-\mathbf{k}_{\epsilon}\right\|^{2}+\beta\|\hat{\mathbf{k}}\|_{T V}
$$

$$
+\frac{\omega}{2}\|\tilde{\mathfrak{f}}-\mathbf{f}\|^{2}-\langle\boldsymbol{\lambda}, \tilde{\mathbf{f}}-\mathbf{f}\rangle+\frac{\omega}{2}\|\hat{\mathbf{f}}-\mathbf{f}\|^{2}-\langle\boldsymbol{\xi}, \hat{\mathbf{f}}-\mathbf{f}\rangle
$$

$$
+\frac{\omega}{2}\|\tilde{\mathbf{k}}-\mathbf{k}\|^{2}-\langle\zeta, \tilde{\mathbf{k}}-\mathbf{k}\rangle+\frac{\omega}{2}\|\hat{\mathbf{k}}-\mathbf{k}\|^{2}-\langle\boldsymbol{\mu}, \hat{\mathbf{k}}-\mathbf{k}\rangle .
$$

Semi-blind regularization for inverse problems

Introduction
The problem at hand
Inspiring work
The continuous model
Formulation
Theoretical analysis
Minimization Algorithm
Formulation
Theoretical analysis
Numerical Example
Implementation of SeB-A
Constraints
Experiment
Conclusions \& Future work

Dep. of Mathematical Sc. Kent State Univeristy Ohio, USA

$$
\begin{aligned}
& \left(\mathbf{k}^{*}, \mathbf{f}^{*}\right)=\arg \min _{\hat{\mathbf{k}} \in \Omega_{\mathbf{k}, \mathbf{k}}, \boldsymbol{f}, \Omega_{\mathrm{t}}}\left\{\left\|\boldsymbol{B}(\mathbf{k}, \mathbf{f})-\mathbf{g}_{\delta}\right\|^{2}+\alpha^{\mathrm{E}}\|\mathbf{f}\|^{2}+\alpha^{\mathrm{TV}}\|\hat{\boldsymbol{f}}\|_{T V}\right. \\
& +\gamma\left\|\mathbf{k}-\mathbf{k}_{\epsilon}\right\|^{2}+\beta\|\hat{\mathbf{k}}\|_{T V}, \\
& \mathbf{k}=\tilde{\mathbf{k}}, \mathbf{f}=\tilde{\mathbf{f}}, \mathbf{k}=\hat{\mathbf{k}}, \mathbf{f}=\hat{\mathbf{f}}\} \text {. }
\end{aligned}
$$

Minimization Algorithm

Formulation (continued)

We need the following
Semi-blind regularization for inverse problems
Assumption
Introduction
The problem at hand
Inspiring work
The continuous model
Formulation
Theoretical analysis
Minimization Algorithm
Formulation
Theoretical analysis
Numerical Example
Implementation of $\mathrm{SeB}-\mathrm{A}$
Constraints
Experiment
Conclusions \& Future work

Minimization Algorithm

Formulation (continued)

We need the following
Semi-blind regularization for inverse problems

Assumption

(a) $B(\mathbf{k}, \mathbf{f})$ is bilinear;

Introduction
The problem at hand
Inspiring work
The continuous model
Formulation
Theoretical analysis
Minimization Algorithm
Formulation
Theoretical analysis
Numerical Example
Implementation of $\mathrm{SeB}-\mathrm{A}$
Constraints
Experiment
Conclusions \& Future work

Minimization Algorithm

Formulation (continued)

We need the following
Semi-blind regularization for inverse problems

Assumption

(a) $B(\mathbf{k}, \mathbf{f})$ is bilinear;
(b) If $\mathbf{k}=\mathbf{0}$ or $\mathbf{f}=\mathbf{0}$ then $B(\mathbf{k}, \mathbf{f})=\mathbf{0}$;

Introduction
The problem at hand
Inspiring work
The continuous model
Formulation
Theoretical analysis
Minimization Algorithm
Formulation
Theoretical analysis
Numerical Example
Implementation of $\mathrm{SeB}-\mathrm{A}$
Constraints
Experiment
Conclusions \& Future work

Minimization Algorithm

Formulation (continued)

We need the following
Semi-blind regularization for inverse problems

Assumption

(a) $B(\mathbf{k}, \mathbf{f})$ is bilinear;
(b) If $\mathbf{k}=\mathbf{0}$ or $\mathbf{f}=\mathbf{0}$ then $B(\mathbf{k}, \mathbf{f})=\mathbf{0}$;
(c) If for a set $K=\left\{\mathbf{k}^{(1)}\right\}$ it holds that $\left\|\mathbf{k}^{(1)}\right\|<C_{K}$ then $A_{\mathbf{k}^{(1)}}=B\left(\mathbf{k}^{(1)}, \cdot\right)$, have bounded norm; If for a set $F=\left\{\mathbf{f}^{(l)}\right\}$ it holds that $\left\|\mathbf{f}^{(l)}\right\|<C_{F}$, then $A_{\mathbf{f}^{(l)}}=B\left(\cdot, \mathbf{f}^{(l)}\right)$ have bounded norm;

Introduction
The problem at hand
Inspiring work
The continuous model
Formulation
Theoretical analysis
Minimization Algorithm
Formulation
Theoretical analysis
Numerical Example
Implementation of $\mathrm{SeB}-\mathrm{A}$
Constraints
Experiment
Conclusions \& Future work

Minimization Algorithm

Formulation (continued)

We need the following

Assumption

(a) $B(\mathbf{k}, \mathbf{f})$ is bilinear;
(b) If $\mathbf{k}=\mathbf{0}$ or $\mathbf{f}=\mathbf{0}$ then $B(\mathbf{k}, \mathbf{f})=\mathbf{0}$;
(c) If for a set $K=\left\{\mathbf{k}^{(1)}\right\}$ it holds that $\left\|\mathbf{k}^{(1)}\right\|<C_{K}$ then
$A_{\mathbf{k}^{(l)}}=B\left(\mathbf{k}^{(1)}, \cdot\right)$, have bounded norm;
If for a set $F=\left\{\mathbf{f}^{(I)}\right\}$ it holds that $\left\|\mathbf{f}^{(l)}\right\|<C_{F}$, then
$A_{\mathbf{f}(1)}=B\left(\cdot, \mathbf{f}^{(l)}\right)$ have bounded norm;
(d) The parameter ω is large enough so that

$$
\begin{gathered}
\left\|B(\mathbf{k}, \mathbf{f})-\mathbf{g}_{\delta}\right\|^{2}+\alpha^{\mathrm{E}}\|\mathbf{f}\|^{2}+\frac{\omega}{2}\|\hat{\mathbf{f}}-\mathbf{f}\|^{2}-\langle\boldsymbol{\xi}, \hat{\mathbf{f}}-\mathbf{f}\rangle, \\
\left\|B(\mathbf{k}, \mathbf{f})-\mathbf{g}_{\delta}\right\|^{2}+\gamma\left\|\mathbf{k}-\mathbf{k}_{\epsilon}\right\|^{2}+\frac{\omega}{2}\|\hat{\mathbf{k}}-\mathbf{k}\|^{2}-\langle\boldsymbol{\mu}, \hat{\mathbf{k}}-\mathbf{k}\rangle
\end{gathered}
$$

Semi-blind regularization for inverse problems

Introduction
The problem at hand
Inspiring work
The continuous model
Formulation
Theoretical analysis
Minimization Algorithm
Formulation
Theoretical analysis
Numerical Example
Implementation of SeB-A
Constraints
Experiment
Conclusions \& Future work

Dep. of Mathematical Sc. Kent State Univeristy Ohio, USA

Minimization Algorithm

Formulation (continued)

Semi-blind regularization for inverse problems
Applying the ADMM algorithm we have
Algorithm (SeB-A)

$$
\begin{aligned}
& \text { for } j=0,1, \ldots \text { do } \\
& \left(\begin{array}{l}
\tilde{\mathbf{f}} \\
\hat{\mathbf{f}}^{(j+1)} \\
\mathbf{k}^{(j+1)}
\end{array}\right)=\arg \min _{\tilde{f}, \hat{\mathbf{f}}, \mathbf{k}} \mathcal{L}\left(\tilde{\mathbf{f}}, \hat{\mathbf{f}}, \mathbf{k} \mid \tilde{\mathbf{k}}^{(j)}, \hat{\mathbf{k}}^{(j)}, \mathbf{f}^{(j)} ; \boldsymbol{\lambda}^{(j)}, \boldsymbol{\xi}^{(j)}, \boldsymbol{\zeta}^{(j)}, \boldsymbol{\mu}^{(j)}\right) ; \\
& \left(\begin{array}{l}
\tilde{\mathbf{k}}^{(j+1)} \\
\hat{\mathbf{k}}^{(j+1)} \\
\mathbf{f}^{(j+1)}
\end{array}\right)=\arg \min _{\tilde{\mathbf{k}}, \hat{\mathbf{k}}, \mathbf{f}} \mathcal{L}\left(\tilde{\mathbf{k}}, \hat{\mathbf{k}}, \mathbf{f} \mid \tilde{\mathbf{f}}^{(j+1)}, \hat{\mathbf{f}}^{(j+1)}, \mathbf{k}^{(j+1)} ; \boldsymbol{\lambda}^{(j)}, \boldsymbol{\xi}^{(j)}, \boldsymbol{\zeta}^{(j)}, \boldsymbol{\mu}^{(j)}\right) ; \\
& \left(\begin{array}{l}
\boldsymbol{\lambda}^{(j+1)} \\
\boldsymbol{\xi}^{(j+1)} \\
\boldsymbol{\zeta}^{(j+1)} \\
\boldsymbol{\mu}^{(j+1)}
\end{array}\right)=\left(\begin{array}{l}
\boldsymbol{\lambda}^{(j)} \\
\boldsymbol{\xi}^{(j)} \\
\boldsymbol{\zeta}^{(j)} \\
\boldsymbol{\mu}^{(j)}
\end{array}\right)-\omega\left(\begin{array}{c}
\tilde{\mathbf{f}^{(j+1)}}-\mathbf{f}^{(j+1)} \\
\hat{\hat{f}^{(j+1)}}-\mathbf{f}^{(j+1)} \\
\tilde{\mathbf{k}}^{(j+1)}-\mathbf{k}^{(j+1)} \\
\hat{\mathbf{k}}^{(j+1)}-\mathbf{k}^{(j+1)}
\end{array}\right) ; \\
& \text { end }
\end{aligned}
$$

Minimization Algorithm

Formulation (continued)

Most of the minimizations above have closed form

$$
\begin{aligned}
& \tilde{\mathbf{f}}^{(j+1)}=P_{\Omega_{\mathbf{f}}}\left(\mathbf{f}^{(j)}+\frac{\boldsymbol{\lambda}^{(j)}}{\omega}\right) \\
& \mathbf{k}^{(j+1)}=\left(2 A_{\mathbf{f}^{(j)}}^{*} A_{\mathbf{f}(j)}+2(\gamma+\omega) I\right)^{-1}\left(2 A_{\mathbf{f}^{(j)}}^{*} \mathbf{g}_{\delta}+2 \gamma \mathbf{k}_{\epsilon}-\zeta^{(j)}+\omega \tilde{\mathbf{k}}^{(j)}-\boldsymbol{\mu}^{(j)}+\omega \hat{\mathbf{k}}^{(j)}\right) \\
& \tilde{\mathbf{k}}^{(j+1)}=P_{\Omega_{\mathbf{k}}}\left(\mathbf{k}^{(j+1)}+\frac{\zeta^{(j)}}{\omega}\right) \\
& \mathbf{f}^{(j+1)}=\left(2 A_{\mathbf{k}^{(j+1)}}^{*} A_{\mathbf{k}^{(j+1)}}+2\left(\alpha^{\mathrm{E}}+2 \omega\right) /\right)^{-1}\left(2 A_{\mathbf{k}^{(j+1)}}^{*} \mathbf{g}_{\delta}-\lambda^{(j)}+\omega \tilde{\mathbf{f}}^{(j+1)}-\boldsymbol{\xi}^{(j)}+\omega \hat{\mathbf{f}}^{(j+1)}\right)
\end{aligned}
$$

Semi-blind regularization for inverse problems

Introduction

The problem at hand
Inspiring work
The continuous model
Formulation
Theoretical analysis
Minimization Algorithm
Formulation
Theoretical analysis
Numerical Example
Implementation of SeB-A
Constraints
Experiment
Conclusions \& Future work

Minimization Algorithm

Formulation (continued)

Most of the minimizations above have closed form

$$
\begin{aligned}
& \tilde{\mathbf{f}}^{(j+1)}=P_{\Omega_{\mathrm{f}}}\left(\mathbf{f}^{(j)}+\frac{\lambda^{(j)}}{\omega}\right) \\
& \mathbf{k}^{(j+1)}=\left(2 A_{f(j)}^{*} A_{f(j)}+2(\gamma+\omega) /\right)^{-1}\left(2 A_{f(j)}^{*} \boldsymbol{g}_{\delta}+2 \gamma \mathbf{k}_{\epsilon}-\zeta^{(j)}+\omega \tilde{\mathbf{k}}^{(j)}-\mu^{(j)}+\omega \hat{\mathbf{k}}^{(j)}\right) \\
& \tilde{\mathbf{k}}^{(j+1)}=P_{\Omega_{\mathbf{k}}}\left(\mathbf{k}^{(j+1)}+\frac{\mathrm{c}^{(j)}}{\omega}\right)
\end{aligned}
$$

Whereas the minimizations w.r.t. $\hat{\mathbf{f}}$ and $\hat{\mathbf{k}}$ does not

$$
\begin{aligned}
& \hat{\mathbf{f}}^{(j+1)}=\arg \min _{\hat{\mathbf{f}}}\|\hat{\mathbf{f}}\|_{T V}+\frac{\omega}{2 \alpha^{\mathrm{TV}}}\left\|\hat{\mathbf{f}}-\left(\mathbf{f}^{(j)}+\frac{\boldsymbol{\xi}^{(j)}}{\omega}\right)\right\|^{2} \\
& \hat{\mathbf{k}}^{(j+1)}=\arg \min _{\hat{\mathbf{k}}}\|\hat{\mathbf{k}}\|_{T V}+\frac{\omega}{2 \beta}\left\|\hat{\mathbf{k}}-\left(\mathbf{k}^{(j+1)}+\frac{\boldsymbol{\mu}^{(j)}}{\omega}\right)\right\|^{2}
\end{aligned}
$$

Semi-blind regularization for inverse problems

Introduction

The problem at hand
Inspiring work
The continuous model
Formulation
Theoretical analysis
Minimization Algorithm
Formulation
Theoretical analysis
Numerical Example
Implementation of SeB-A
Constraints
Experiment
Conclusions \& Future work

Dep. of Mathematical Sc. Kent State Univeristy

Minimization Algorithm

Formulation (continued)

Most of the minimizations above have closed form
$\tilde{\mathbf{f}}(j+1)=P_{\Omega_{\mathbf{f}}}\left(\mathbf{f}^{(j)}+\frac{\boldsymbol{\lambda}^{(j)}}{\omega}\right)$
$\mathbf{k}^{(j+1)}=\left(2 A_{\mathbf{f}^{(j)}}^{*} A_{\mathbf{f}(j)}+2(\gamma+\omega) /\right)^{-1}\left(2 A_{\mathbf{f}(j)}^{*} \mathbf{g}_{\delta}+2 \gamma \mathbf{k}_{\epsilon}-\zeta^{(j)}+\omega \tilde{\mathbf{k}}^{(j)}-\boldsymbol{\mu}^{(j)}+\omega \hat{\mathbf{k}}^{(j)}\right)$
$\tilde{\mathbf{k}}^{(j+1)}=P_{\Omega_{\mathbf{k}}}\left(\mathbf{k}^{(j+1)}+\frac{\zeta^{(j)}}{\omega}\right)$
$\mathbf{f}^{(j+1)}=\left(2 A_{\mathbf{k}^{(j+1)}}^{*} A_{\mathbf{k}^{(j+1)}}+2\left(\alpha^{\mathrm{E}}+2 \omega\right) /\right)^{-1}\left(2 A_{\mathbf{k}^{(j+1)}}^{*} \mathbf{g}_{\delta}-\boldsymbol{\lambda}^{(j)}+\omega \tilde{\mathbf{f}}^{(j+1)}-\boldsymbol{\xi}^{(j)}+\omega \hat{\mathbf{f}}^{(j+1)}\right)$
Whereas the minimizations w.r.t. $\hat{\mathbf{f}}$ and $\hat{\mathbf{k}}$ does not

$$
\begin{aligned}
& \hat{\mathbf{f}}^{(j+1)}=\arg \min _{\mathfrak{f}}\|\hat{\mathbf{f}}\|_{T V}+\frac{\omega}{2 \alpha^{T V}}\left\|\hat{\mathbf{f}}-\left(\mathbf{f}^{(j)}+\frac{\xi^{(j)}}{\omega}\right)\right\|^{2} \\
& \hat{\mathbf{k}}^{(j+1)}=\arg \min _{\mathbf{k}}\|\hat{\mathbf{k}}\|_{T V}+\frac{\omega}{2 \beta}\left\|\hat{\mathbf{k}}-\left(\mathbf{k}^{(j+1)}+\frac{\mu^{(j)}}{\omega}\right)\right\|^{2}
\end{aligned}
$$

For the resolution of these problems we will have to resort to iterative methods.

Semi-blind regularization for inverse problems

Introduction

The problem at hand
Inspiring work
The continuous model
Formulation
Theoretical analysis
Minimization Algorithm
Formulation
Theoretical analysis
Numerical Example
Implementation of SeB-A
Constraints
Experiment
Conclusions \& Future work

Dep. of Mathematical Sc. Kent State Univeristy Ohio, USA

Minimization Algorithm

Theoretical analysis

We perform the theoretical analysis on the unconstrained model, i.e., assuming that $\Omega_{\mathfrak{f}}=\Omega_{\mathbf{k}}=\mathbb{R}^{N}$. In this case we can ignore the Lagrangian multipliers λ and ζ and the auxiliary variables $\tilde{\mathbf{k}}$ and $\tilde{\mathbf{f}}$.

Introduction
The problem at hand
Inspiring work
The continuous model
Formulation
Theoretical analysis
Minimization Algorithm
Formulation
Theoretical analysis
Numerical Example
Implementation of $\mathrm{SeB}-\mathrm{A}$
Constraints
Experiment
Conclusions \& Future work

Minimization Algorithm

Theoretical analysis

We perform the theoretical analysis on the unconstrained model, i.e., assuming that $\Omega_{\mathfrak{f}}=\Omega_{\mathbf{k}}=\mathbb{R}^{N}$. In this case we can ignore the Lagrangian multipliers λ and ζ and the auxiliary variables $\tilde{\mathbf{k}}$ and $\tilde{\mathbf{f}}$.

The proof of convergence of SeB-A is inspired by [M. Hong, Z.-Q. Luo, and M. Razaviyayn, SIOPT2016].

Introduction
The problem at hand
Inspiring work
The continuous model
Formulation
Theoretical analysis
Minimization Algorithm
Formulation
Theoretical analysis
Numerical Example
Implementation of SeB-A
Constraints
Experiment
Conclusions \& Future work

Minimization Algorithm

Theoretical analysis

Semi-blind regularization for inverse problems
We perform the theoretical analysis on the unconstrained model, i.e., assuming that $\Omega_{\mathfrak{f}}=\Omega_{\mathbf{k}}=\mathbb{R}^{N}$. In this case we can ignore the Lagrangian multipliers λ and ζ and the auxiliary variables $\tilde{\mathbf{k}}$ and $\tilde{\mathbf{f}}$.

The proof of convergence of SeB-A is inspired by [M. Hong, Z.-Q. Luo, and M. Razaviyayn, SIOPT2016].

For the proof of convergence we need the following

Assumption

The norm of the iterates $\mathbf{f}^{(j)}$ and $\mathbf{k}^{(j)}$ generated by SeB-A are uniformly bounded.

Introduction
The problem at hand
Inspiring work
The continuous model
Formulation
Theoretical analysis
Minimization Algorithm
Formulation
Theoretical analysis
Numerical Example
Implementation of SeB-A
Constraints
Experiment
Conclusions \& Future work

Minimization Algorithm

Theoretical analysis (continued)

Semi-blind regularization for inverse problems

We can now state some preliminary results

Lemma

Let $\xi^{(j)}, \mu^{(j)}, \mathbf{f}^{(j)}, \mathbf{k}^{(j)}$ be the iterations generated by SeB-A.
Then we have

$$
\begin{aligned}
& \left\|\boldsymbol{\xi}^{(j+1)}-\boldsymbol{\xi}^{(j)}\right\| \leq C\left\|\mathbf{f}^{(j+1)}-\mathbf{f}^{(j)}\right\| \\
& \left\|\boldsymbol{\mu}^{(j+1)}-\boldsymbol{\mu}^{(j)}\right\| \leq C\left\|\hat{\mathbf{k}}^{(j+1)}-\hat{\mathbf{k}}^{(j)}\right\|
\end{aligned}
$$

Introduction
The problem at hand
Inspiring work
The continuous model
Formulation
Theoretical analysis
Minimization Algorithm
Formulation
Theoretical analysis
Numerical Example
Implementation of SeB-A
Constraints
Experiment
Conclusions \& Future work
where $C>0$ is a constant.

Minimization Algorithm

Theoretical analysis (continued)

Semi-blind regularization for inverse problems

Proposition

It holds that

$$
\begin{aligned}
& \mathcal{L}\left(\mathbf{k}^{(j+1)}, \mathbf{f}^{(j+1)}, \hat{\mathbf{k}}^{(j+1)}, \hat{\mathbf{f}}^{(j+1)} ; \boldsymbol{\xi}^{(j+1)}, \boldsymbol{\mu}^{(j+1)}\right) \\
& -\mathcal{L}\left(\mathbf{k}^{(j)}, \mathbf{f}^{(j)}, \hat{\mathbf{k}}^{(j)}, \hat{\mathbf{f}}^{(j)} ; \boldsymbol{\xi}^{(j)}, \boldsymbol{\mu}^{(j)}\right) \\
& \leq\left(\frac{C^{2}}{\omega}-\frac{\rho}{2}\right)\left(\left\|\mathbf{f}^{(j+1)}-\mathbf{f}^{(j)}\right\|^{2}+\left\|\hat{\mathbf{k}}^{(j+1)}-\hat{\mathbf{k}}^{(j)}\right\|^{2}\right) \\
& -\frac{\rho}{2}\left(\left\|\hat{\mathbf{f}}^{(j+1)}-\hat{\mathbf{f}}^{(j)}\right\|^{2}+\left\|\mathbf{k}^{(j+1)}-\mathbf{k}^{(j)}\right\|^{2}\right)
\end{aligned}
$$

Introduction
The problem at hand
Inspiring work
The continuous model
Formulation
Theoretical analysis
Minimization Algorithm
Formulation
Theoretical analysis
Numerical Example
Implementation of SeB-A
Constraints
Experiment
Conclusions \& Future work

Minimization Algorithm

Theoretical analysis (continued)

Semi-blind regularization for inverse problems

Lemma

Let \mathcal{L} be the Augmented Lagrangian defined above and $\mathbf{k}^{(j)}, \mathbf{f}^{(j)}, \hat{\mathbf{k}}^{(j)}, \hat{\mathbf{f}}^{(j)}, \boldsymbol{\xi}^{(j)}, \boldsymbol{\mu}^{(j)}$ the iterates generated by SeB-A. Assume that $\frac{C^{2}}{\omega}-\frac{\rho}{2}<0$, then we have that

$$
\lim _{j \rightarrow \infty} \mathcal{L}\left(\mathbf{k}^{(j)}, \mathbf{f}^{(j)}, \hat{\mathbf{k}}^{(j)}, \hat{\mathbf{f}}^{(j)} ; \boldsymbol{\xi}^{(j)}, \boldsymbol{\mu}^{(j)}\right) \geq \nu
$$

where ν is the global minimum of $J_{\alpha, \beta}^{\delta, \epsilon}(\mathbf{k}, \mathbf{f})$.

Introduction
The problem at hand
Inspiring work
The continuous model
Formulation
Theoretical analysis
Minimization Algorithm
Formulation
Theoretical analysis
Numerical Example
Implementation of SeB-A
Constraints
Experiment
Conclusions \& Future work

Minimization Algorithm

Theoretical analysis (continued)

Semi-blind regularization for inverse problems

We are now in position to state our main result

Theorem

The iterates generated by SeB-A converge to a limit point $\mathbf{p}_{*}=\left(\mathbf{k}_{*}, \mathbf{f}_{*}, \hat{\mathbf{k}}_{*}, \hat{\mathbf{f}}_{*}, \boldsymbol{\xi}_{*}, \boldsymbol{\mu}_{*}\right)$. Moreover, the followings hold
(a) \mathbf{p}_{*} is a stationary point
(b) Assume now that $\Omega_{\mathrm{f}} \times \Omega_{\mathrm{k}}$ is convex and compact then

$$
\lim _{j \rightarrow \infty} \operatorname{dist}\left(\left(\mathbf{f}^{(j)}, \mathbf{k}^{(j)}, \hat{\mathbf{f}}^{(j)}, \hat{\mathbf{k}}^{(j)} ; \boldsymbol{\xi}^{(j)}, \boldsymbol{\mu}^{(j)}\right), \boldsymbol{Z}^{*}\right)=0
$$

where Z^{*} denotes the set of stationary points and dist the Euclidean distance between sets and points.

Introduction
The problem at hand
Inspiring work
The continuous model
Formulation
Theoretical analysis
Minimization Algorithm
Formulation
Theoretical analysis
Numerical Example
Implementation of $\mathrm{SeB}-\mathrm{A}$
Constraints
Experiment
Conclusions \& Future work

Numerical Example
 Implementation of SeB-A

Before giving a numerical example we discuss the implementation of the SeB-A algorithm and the construction of Ω_{f} and Ω_{k}.

Semi-blind regularization for inverse problems

Introduction
The problem at hand
Inspiring work
The continuous model
Formulation
Theoretical analysis
Minimization Algorithm
Formulation
Theoretical analysis
Numerical Example
Implementation of SeB-A
Constraints
Experiment
Conclusions \& Future work

Numerical Example

Implementation of SeB-A implementation of the SeB-A algorithm and the construction of Ω_{f} and Ω_{k}.
For the implementation of the SeB-A algorithm we reformulate following [R.H. Chan, M. Tao, and X. Yuan, SIMS2013] the minimization of $J_{\alpha, \beta}^{\delta, \epsilon}$ in another way

$$
\begin{gathered}
\left(\mathbf{k}^{*}, \mathbf{f}^{*}\right)=\arg \min _{\substack{\tilde{\mathbf{k}} \in \Omega_{\mathbf{k}}, \tilde{\mathbf{f}} \in \Omega_{\mathrm{f}} \\
\hat{\mathbf{k}}, \mathbf{f}, \mathbf{k}, \mathbf{f}}}\left\{\left\|B(\mathbf{k}, \mathbf{f})-\mathbf{g}_{\delta}\right\|^{2}+\alpha^{\mathrm{E}}\|\boldsymbol{f}\|^{2}+\alpha^{\mathrm{TV}} \sum_{i=1}^{N}\left\|\hat{\mathbf{f}}_{i}\right\|\right. \\
+\gamma\left\|\mathbf{k}-\mathbf{k}_{\epsilon}\right\|^{2}+\beta \sum_{i=1}^{N}\left\|\hat{\mathbf{k}}_{i}\right\|, \\
\\
\left.\mathbf{k}=\tilde{\mathbf{k}}, \mathbf{f}=\tilde{\mathbf{f}}, D_{i} \mathbf{k}=\hat{\mathbf{k}}_{i}, D_{i} \mathbf{f}=\hat{\mathbf{f}}_{i}\right\},
\end{gathered}
$$

Introduction
The problem at hand
Inspiring work
The continuous model
Formulation
Theoretical analysis
Minimization Algorithm
Formulation
Theoretical analysis
Numerical Example
Implementation of SeB-A
Constraints
Experiment
Conclusions \& Future work

Numerical Example

Implementation of SeB-A implementation of the SeB-A algorithm and the construction of Ω_{f} and Ω_{k}.
For the implementation of the SeB-A algorithm we reformulate following [R.H. Chan, M. Tao, and X. Yuan, SIMS2013] the minimization of $J_{\alpha, \beta}^{\delta, \epsilon}$ in another way

$$
\begin{aligned}
& +\gamma\left\|\mathbf{k}-\mathbf{k}_{\epsilon}\right\|^{2}+\beta \sum_{i=1}^{N}\left\|\hat{\mathbf{k}}_{i}\right\|, \\
& \left.\mathbf{k}=\tilde{\mathbf{k}}, \mathbf{f}=\tilde{\mathbf{f}}, D_{i} \mathbf{k}=\hat{\mathbf{k}}_{i}, D_{i} \mathbf{f}=\hat{\mathbf{f}}_{i}\right\},
\end{aligned}
$$

Applying the ADMM algorithm to this reformulation we obtain the CSeB-A algorithm.

Introduction
The problem at hand
Inspiring work
The continuous model
Formulation
Theoretical analysis
Minimization Algorithm
Formulation
Theoretical analysis
Numerical Example
Implementation of $\mathrm{SeB}-\mathrm{A}$
Constraints
Experiment
Conclusions \& Future work

Algorithm (CSeB-A)

$$
\begin{aligned}
& \text { for } j=0,1, \ldots \text { do } \\
& \left(\begin{array}{l}
\tilde{\mathbf{f}}^{(j+1)} \\
\hat{\mathbf{f}}^{(j+1)} \\
\mathbf{k}^{(j+1)}
\end{array}\right)=\arg \min _{\tilde{\tilde{f}}, \hat{\mathbf{f}}, \mathbf{k}} \mathcal{L}\left(\tilde{\mathbf{f}}, \hat{\mathbf{f}}, \mathbf{k} \mid \tilde{\mathbf{k}}^{(j)}, \hat{\mathbf{k}}^{(j)}, \mathbf{f}^{(j)} ; \boldsymbol{\lambda}^{(j)}, \boldsymbol{\xi}^{(j)}, \boldsymbol{\zeta}^{(j)}, \boldsymbol{\mu}^{(j)}\right) ; \\
& \left(\begin{array}{l}
\tilde{\mathbf{k}}^{(j+1)} \\
\hat{\mathbf{k}}^{(j+1)} \\
\mathbf{f}^{(j+1)}
\end{array}\right)=\arg \min _{\mathbf{k}, \mathbf{k}, \mathbf{f}} \mathcal{L}\left(\tilde{\mathbf{k}}, \hat{\mathbf{k}}, \mathbf{f} \mid \tilde{\mathbf{f}}^{(j+1)}, \hat{\mathbf{f}}^{(j+1)}, \mathbf{k}^{(j+1)} ; \boldsymbol{\lambda}^{(j)}, \boldsymbol{\xi}^{(j)}, \boldsymbol{\zeta}^{(j)}, \boldsymbol{\mu}^{(j)}\right) ; \\
& \left(\begin{array}{l}
\lambda^{(j+1)} \\
\boldsymbol{\xi}^{(j+1)} \\
\boldsymbol{\zeta}^{(j+1)} \\
\boldsymbol{\mu}^{(j+1)}
\end{array}\right)=\left(\begin{array}{c}
\lambda^{(j)} \\
\boldsymbol{\xi}^{(j)} \\
\boldsymbol{\zeta}^{(j)} \\
\boldsymbol{\mu}^{(j)}
\end{array}\right)-\omega\left(\begin{array}{c}
\tilde{f}^{(j+1)}-\mathbf{f}^{(j+1)} \\
\hat{\mathbf{f}}^{(j+1)}-D \mathbf{f}^{(j+1)} \\
\tilde{\mathbf{k}}^{(j+1)}-\mathbf{k}^{(j+1)} \\
\hat{\mathbf{k}}^{(j+1)}-D \mathbf{k}^{(j+1)}
\end{array}\right) ; \\
& \text { end }
\end{aligned}
$$

Introduction
The problem at hand
Inspiring work
The continuous model Formulation
Theoretical analysis
Minimization Algorithm
Formulation
Theoretical analysis
Numerical Example
Implementation of SeB-A
Constraints
Experiment
Conclusions \& Future work

Algorithm (CSeB-A)

$$
\begin{aligned}
& \text { for } j=0,1, \ldots \text { do } \\
& \left(\begin{array}{l}
\tilde{\mathbf{f}}\left(\mathbf{f}^{(j+1)}\right. \\
\hat{\mathbf{f}}^{(j+1)} \\
\mathbf{k}^{(j+1)}
\end{array}\right)=\arg \min _{\tilde{\tilde{f}, \hat{\mathbf{f}}, \mathbf{k}}} \mathcal{L}\left(\tilde{\mathbf{f}}, \hat{\mathbf{f}}, \mathbf{k} \mid \tilde{\mathbf{k}}^{(j)}, \hat{\mathbf{k}}^{(j)}, \mathbf{f}^{(j)} ; \boldsymbol{\lambda}^{(j)}, \boldsymbol{\xi}^{(j)}, \boldsymbol{\zeta}^{(j)}, \boldsymbol{\mu}^{(j)}\right) ; \\
& \left(\begin{array}{l}
\tilde{\mathbf{k}}^{(j+1)} \\
\hat{\mathbf{k}}^{(j+1)} \\
\mathbf{f}^{(j+1)}
\end{array}\right)=\arg \min _{\mathbf{k}, \mathbf{k}, \mathbf{f}} \mathcal{L}\left(\tilde{\mathbf{k}}, \hat{\mathbf{k}}, \mathbf{f} \mid \tilde{\mathbf{f}}^{(j+1)}, \hat{\mathbf{f}}^{(j+1)}, \mathbf{k}^{(j+1)} ; \boldsymbol{\lambda}^{(j)}, \boldsymbol{\xi}^{(j)}, \boldsymbol{\zeta}^{(j)}, \boldsymbol{\mu}^{(j)}\right) ; \\
& \left(\begin{array}{l}
\lambda^{(j+1)} \\
\xi^{(j+1)} \\
\boldsymbol{\zeta}^{(j+1)} \\
\boldsymbol{\mu}^{(j+1)}
\end{array}\right)=\left(\begin{array}{c}
\lambda^{(j)} \\
\xi^{(j)} \\
\boldsymbol{\zeta}^{(j)} \\
\boldsymbol{\mu}^{(j)}
\end{array}\right)-\omega\left(\begin{array}{c}
\tilde{f}^{(j+1)}-\mathbf{f}^{(j+1)} \\
\hat{\mathbf{f}}^{(j+1)}-D \mathbf{f}^{(j+1)} \\
\tilde{\mathbf{k}^{(j+1)}-\mathbf{k}^{(j+1)}} \\
\hat{\mathbf{k}}^{(j+1)}-D \mathbf{k}^{(j+1)}
\end{array}\right) ; \\
& \text { end }
\end{aligned}
$$

The minimizations in CSeB-A are easily computed and all have a closed form. However, we are not able to provide a rigorous convergence analysis.

Introduction
The problem at hand
Inspiring work
The continuous model
Formulation
Theoretical analysis
Minimization Algorithm
Formulation
Theoretical analysis
Numerical Example
Implementation of SeB-A
Constraints
Experiment
Conclusions \& Future work

Semi-blind

$$
\begin{aligned}
\tilde{\mathbf{f}}^{(j+1)}= & P_{\Omega_{\mathbf{f}}}\left(\mathbf{f}^{(j)}+\frac{\boldsymbol{\lambda}^{(j)}}{\omega}\right), \quad \tilde{\mathbf{k}}^{(j+1)}=P_{\Omega_{\mathbf{k}}}\left(\mathbf{k}^{(j+1)}+\frac{\zeta^{(j)}}{\omega}\right) \\
\hat{\mathbf{f}}_{i}^{(j+1)}= & \frac{\left(D_{i} \mathbf{f}^{(j)}+\frac{1}{\omega} \xi_{i}^{(j)}\right)}{\left\|D_{i} \mathbf{f}^{(j)}+\frac{1}{\omega} \xi_{i}^{(j)}\right\|} \circ\left(\left\|D_{i} \mathbf{f}^{(j)}+\frac{1}{\omega} \xi_{i}^{(j)}\right\|-\frac{\alpha^{\mathrm{TV}}}{\omega}\right)_{+} \\
\mathbf{k}^{(j+1)}= & \left(2 A_{\mathbf{f}(j)}^{*} A_{\mathbf{f}(j)}+(2 \gamma+\omega) I+\omega D^{*} D^{-1}\right. \\
& \cdot\left(2 A_{\mathbf{f}}^{*(j)} \mathbf{g}_{\delta}+2 \gamma \mathbf{k}_{\epsilon}-\boldsymbol{\zeta}^{(j)}+\omega \tilde{\mathbf{k}}^{(j)}-D^{*} \boldsymbol{\mu}^{(j)}+\omega D^{*} \hat{\mathbf{k}}^{(j)}\right) \\
\hat{\mathbf{k}}_{i}^{(j+1)}= & \frac{\left(D_{i} \mathbf{k}^{(j+1)}+\frac{1}{\omega} \boldsymbol{\mu}_{i}^{(j)}\right)}{\left\|D_{i} \mathbf{k}^{(j+1)}+\frac{1}{\omega} \boldsymbol{\mu}_{i}^{(j)}\right\|} \circ\left(\left\|D_{i} \mathbf{k}^{(j+1)}+\frac{1}{\omega} \boldsymbol{\mu}_{i}^{(j)}\right\|-\frac{\beta}{\omega}\right)_{+} \\
\mathbf{f}^{(j+1)}= & \left(2 A_{\mathbf{k}^{(j+1)}}^{*} A_{\mathbf{k}^{(j+1)}}+2\left(\alpha^{\mathrm{E}}+\omega\right) I+\omega D^{*} D\right)^{-1} \\
& \cdot\left(2 A_{\mathbf{k}(j+1)}^{*} \mathbf{g}_{\delta}-\boldsymbol{\lambda}+\omega \tilde{\mathbf{f}}^{(j+1)}-D^{*} \xi^{(j)}+\omega D^{*} \hat{\mathbf{f}}^{(j+1)}\right)
\end{aligned}
$$

regularization for inverse problems

Introduction
The problem at hand
Inspiring work
The continuous model
Formulation
Theoretical analysis
Minimization Algorithm
Formulation
Theoretical analysis
Numerical Example
Implementation of SeB-A
Constraints
Experiment
Conclusions \& Future work

Dep. of Mathematical Sc. Kent State Univeristy

Numerical Example

Constraints

Semi-blind regularization for inverse problems

We are going to consider the framework of space invariant image deblurring.

Introduction
The problem at hand
Inspiring work
The continuous model
Formulation
Theoretical analysis
Minimization Algorithm
Formulation
Theoretical analysis
Numerical Example
Implementation of $\mathrm{SeB}-\mathrm{A}$
Constraints
Experiment
Conclusions \& Future work

Numerical Example

We are going to consider the framework of space invariant image deblurring.

Introduction
The problem at hand
Inspiring work
The continuous model
Formulation
Theoretical analysis
Minimization Algorithm
Formulation
Theoretical analysis
Numerical Example
Implementation of $\mathrm{SeB}-\mathrm{A}$
Constraints
Experiment
Conclusions \& Future work

Numerical Example

Semi-blind regularization for inverse problems

We are going to consider the framework of space invariant image deblurring.

Introduction
The problem at hand
Inspiring work
The continuous model
Formulation
Theoretical analysis
Minimization Algorithm
Formulation
Theoretical analysis
Numerical Example
Implementation of $\mathrm{SeB}-\mathrm{A}$
Constraints
Experiment
Conclusions \& Future work

Numerical Example

Semi-blind regularization for inverse problems

We are going to consider the framework of space invariant image deblurring.

Introduction
The problem at hand
Inspiring work
The continuous model
Formulation
Theoretical analysis
Minimization Algorithm
Formulation
Theoretical analysis
Numerical Example
Implementation of $\mathrm{SeB}-\mathrm{A}$
Constraints
Experiment
Conclusions \& Future work

Numerical Example

We are going to consider the framework of space invariant image deblurring.

- k \rightarrow PSF;
- $\mathrm{g} \rightarrow$ Blurred image;
- $\mathrm{f} \rightarrow$ True image;
- $B(\cdot, \cdot) \rightarrow$ Convolution ${ }^{1}$.

Introduction
The problem at hand
Inspiring work
The continuous model
Formulation
Theoretical analysis
Minimization Algorithm
Formulation
Theoretical analysis
Numerical Example
Implementation of SeB-A
Constraints
Experiment
Conclusions \& Future work

Numerical Example

We are going to consider the framework of space invariant image deblurring.

- k \rightarrow PSF;
- $\mathrm{g} \rightarrow$ Blurred image;
- $\mathrm{f} \rightarrow$ True image;
- $B(\cdot, \cdot) \rightarrow$ Convolution ${ }^{1}$.

Introduction
The problem at hand
Inspiring work
The continuous model
Formulation
Theoretical analysis
Minimization Algorithm
Formulation
Theoretical analysis
Numerical Example
Implementation of SeB-A
Constraints
Experiment
Conclusions \& Future work
Thus we are going to impose nonnegativity and flux constraints.

Numerical Example

Constraints (continued)

We briefly discuss the flux constraint.
Semi-blind regularization for inverse problems

Introduction
The problem at hand
Inspiring work
The continuous model
Formulation
Theoretical analysis
Minimization Algorithm
Formulation
Theoretical analysis
Numerical Example
Implementation of SeB-A
Constraints
Experiment
Conclusions \& Future work

Numerical Example

Constraints (continued)

We briefly discuss the flux constraint.
Semi-blind regularization for inverse problems
For the blurring phenomenon it holds
(i) $\mathbf{k}_{i} \geq 0$;
(ii) flux $(\mathbf{k}):=\mathbf{1}^{t} \mathbf{k}=1$, where $\mathbf{1}=(1,1, \ldots, 1)^{t}$.

Introduction
The problem at hand
Inspiring work
The continuous model
Formulation
Theoretical analysis
Minimization Algorithm
Formulation
Theoretical analysis
Numerical Example
Implementation of $\mathrm{SeB}-\mathrm{A}$
Constraints
Experiment
Conclusions \& Future work

Numerical Example

Constraints (continued)

We briefly discuss the flux constraint.
Semi-blind regularization for inverse problems
For the blurring phenomenon it holds
(i) $\mathrm{k}_{i} \geq 0$;
(ii) flux $(\mathbf{k}):=\mathbf{1}^{t} \mathbf{k}=1$, where $\mathbf{1}=(1,1, \ldots, 1)^{t}$.

Then we have

- A_{k} has no negative entries;
- the row-sum and column-sum of $A_{\mathbf{k}}$ is 1 ;

Introduction
The problem at hand
Inspiring work
The continuous model
Formulation
Theoretical analysis
Minimization Algorithm
Formulation
Theoretical analysis
Numerical Example
Implementation of SeB-A
Constraints
Experiment
Conclusions \& Future work

Numerical Example

Constraints (continued)

We briefly discuss the flux constraint.
Semi-blind regularization for inverse problems
For the blurring phenomenon it holds
(i) $\mathbf{k}_{i} \geq 0$;
(ii) flux $(\mathbf{k}):=\mathbf{1}^{t} \mathbf{k}=1$, where $\mathbf{1}=(1,1, \ldots, 1)^{t}$.

Then we have

- A_{k} has no negative entries;
- the row-sum and column-sum of $A_{\mathbf{k}}$ is 1 ;
- If $\mathbf{y}=A_{\mathbf{k}} \mathbf{z}$, then flux $(\mathbf{y})=$ flux (\mathbf{z}).

Then it holds

$$
\operatorname{flux}(\mathbf{f})=\operatorname{flux}(\mathbf{g})
$$

Introduction
The problem at hand
Inspiring work
The continuous model
Formulation
Theoretical analysis
Minimization Algorithm
Formulation
Theoretical analysis
Numerical Example
Implementation of SeB-A
Constraints
Experiment
Conclusions \& Future work

Numerical Example

Constraints (continued)

We briefly discuss the flux constraint.
Semi-blind regularization for inverse problems
For the blurring phenomenon it holds
(i) $\mathbf{k}_{i} \geq 0$;
(ii) flux $(\mathbf{k}):=\mathbf{1}^{t} \mathbf{k}=1$, where $\mathbf{1}=(1,1, \ldots, 1)^{t}$.

Then we have

- A_{k} has no negative entries;
- the row-sum and column-sum of $A_{\mathbf{k}}$ is 1 ;
- If $\mathbf{y}=A_{\mathbf{k}} \mathbf{z}$, then flux $(\mathbf{y})=$ flux (\mathbf{z}).

Then it holds

$$
\operatorname{flux}(\mathbf{f})=\operatorname{flux}(\mathbf{g})
$$

In the noisy case: $\mathbf{g}_{\delta}=\mathbf{g}+\boldsymbol{\eta}$. Then

$$
\operatorname{flux}\left(\mathbf{g}_{\delta}\right)=\operatorname{flux}(\mathbf{g})+\operatorname{flux}(\eta) \approx \operatorname{flux}(\mathbf{g})+0=\text { flux }(\mathbf{g}) .
$$

Introduction
The problem at hand
Inspiring work
The continuous model

Formulation

Theoretical analysis
Minimization Algorithm
Formulation
Theoretical analysis
Numerical Example
Implementation of SeB-A
Constraints
Experiment
Conclusions \& Future work

Numerical Example

Constraints (continued)

We set

$$
\begin{aligned}
\Omega_{\mathbf{f}} & =\left\{\mathbf{x}: \mathbf{x}_{i} \geq 0\right\} \cap\left\{\mathbf{x}: \text { flux }(\mathbf{x})=\text { flux }\left(\mathbf{g}_{\delta}\right)\right\}=\Omega_{0} \cap \Omega_{\text {flux }}^{\mathbf{g}_{\delta}} \\
\Omega_{\mathbf{k}} & =\left\{\mathbf{x}: \mathbf{x}_{i} \geq 0\right\} \cap\{\mathbf{x}: \text { flux }(\mathbf{x})=1\}=\Omega_{0} \cap \Omega_{\text {flux }}^{1}
\end{aligned}
$$

Semi-blind regularization for inverse problems

Introduction
The problem at hand
Inspiring work

The continuous model
Formulation
Theoretical analysis
Minimization Algorithm
Formulation
Theoretical analysis
Numerical Example
Implementation of SeB-A
Constraints
Experiment
Conclusions \& Future work

Numerical Example

Constraints (continued)

We set

$$
\begin{aligned}
\Omega_{\mathbf{f}} & =\left\{\mathbf{x}: \mathbf{x}_{i} \geq 0\right\} \cap\left\{\mathbf{x}: \text { flux }(\mathbf{x})=\text { flux }\left(\mathbf{g}_{\delta}\right)\right\}=\Omega_{0} \cap \Omega_{\text {flux }}^{\mathbf{g}_{\delta}} \\
\Omega_{\mathbf{k}} & =\left\{\mathbf{x}: \mathbf{x}_{i} \geq 0\right\} \cap\{\mathbf{x}: \text { flux }(\mathbf{x})=1\}=\Omega_{0} \cap \Omega_{\text {flux }}^{1}
\end{aligned}
$$

Since the projection on either Ω_{f} or Ω_{k} is not trivial we will split the constraints and use two auxiliary variables in the ADMM algorithm.

Semi-blind regularization for inverse problems

Introduction
The problem at hand
Inspiring work
The continuous model
Formulation
Theoretical analysis
Minimization Algorithm
Formulation
Theoretical analysis
Numerical Example
Implementation of SeB-A
Constraints
Experiment
Conclusions \& Future work

Numerical Example

Constraints (continued)

We set

$$
\begin{aligned}
\Omega_{\mathbf{f}} & =\left\{\mathbf{x}: \mathbf{x}_{i} \geq 0\right\} \cap\left\{\mathbf{x}: \text { flux }(\mathbf{x})=\text { flux }\left(\mathbf{g}_{\delta}\right)\right\}=\Omega_{0} \cap \Omega_{\text {flux }}^{g_{\delta}} \\
\Omega_{\mathbf{k}} & =\left\{\mathbf{x}: \mathbf{x}_{i} \geq 0\right\} \cap\{\mathbf{x}: \text { flux }(\mathbf{x})=1\}=\Omega_{0} \cap \Omega_{\text {flux }}^{1}
\end{aligned}
$$

Since the projection on either $\Omega_{\mathfrak{f}}$ or Ω_{k} is not trivial we will split the constraints and use two auxiliary variables in the ADMM algorithm.
The projections into $\Omega_{\text {flux }}^{g_{\delta}}$ and $\Omega_{\text {flux }}^{1}$ can be computed in $O(N)$ operations.

Introduction
The problem at hand
Inspiring work
The continuous model
Formulation
Theoretical analysis
Minimization Algorithm
Formulation
Theoretical analysis
Numerical Example
Implementation of SeB-A
Constraints
Experiment
Conclusions \& Future work

Numerical Example

Constraints (continued)

We set

$$
\begin{aligned}
\Omega_{\mathbf{f}} & =\left\{\mathbf{x}: \mathbf{x}_{i} \geq 0\right\} \cap\left\{\mathbf{x}: \text { flux }(\mathbf{x})=\text { flux }\left(\mathbf{g}_{\delta}\right)\right\}=\Omega_{0} \cap \Omega_{\text {flux }}^{\mathbf{g}_{\delta}} \\
\Omega_{\mathbf{k}} & =\left\{\mathbf{x}: \mathbf{x}_{i} \geq 0\right\} \cap\{\mathbf{x}: \text { flux }(\mathbf{x})=1\}=\Omega_{0} \cap \Omega_{\text {flux }}^{1}
\end{aligned}
$$

Since the projection on either Ω_{f} or Ω_{k} is not trivial we will split the constraints and use two auxiliary variables in the ADMM algorithm.
The projections into $\Omega_{\text {flux }}^{g_{\delta}}$ and $\Omega_{\text {flux }}^{1}$ can be computed in $O(N)$ operations.
In particular

$$
\begin{gathered}
\mathcal{P}_{\Omega_{\text {fux }}^{g_{\delta}}}(\mathbf{x})=\frac{\text { flux }\left(\mathbf{g}_{\delta}\right)-\text { flux }(\mathbf{x})}{N} \mathbf{1}+\mathbf{x} \\
\mathcal{P}_{\Omega_{\text {fux }}^{1}}(\mathbf{x})=\frac{1-\text { flux }(\mathbf{x})}{N} \mathbf{1}+\mathbf{x}
\end{gathered}
$$

Semi-blind regularization for inverse problems

Introduction
The problem at hand
Inspiring work
The continuous model
Formulation
Theoretical analysis
Minimization Algorithm
Formulation
Theoretical analysis
Numerical Example
Implementation of $\mathrm{SeB}-\mathrm{A}$
Constraints
Experiment
Conclusions \& Future work

Dep. of Mathematical Sc.

Numerical Example
 Experiment

$$
\begin{aligned}
& \mathbf{g}_{\delta} \\
& \delta=01\|\mathbf{g}\|
\end{aligned}
$$

$\log \left(\left|\mathbf{k}_{\epsilon}\right|\right)$
$\epsilon=0.8\|\mathbf{k}\|$

Semi-blind
regularization for inverse problems

Introduction

The problem at hand
Inspiring work
The continuous model
Formulation
Theoretical analysis
Minimization Algorithm
Formulation
Theoretical analysis
Numerical Example
Implementation of SeB-A
Constraints
Experiment
Conclusions \& Future work

Dep. of Mathematical Sc. Kent State Univeristy

Numerical Example

Experiment (continued)

Semi-blind regularization for inverse problems

	BID-ADMM	TV	CSeB-A
SNR f	11.924	12.844	23.268
SNR k	1.597	--	22.925

- BID-ADMM: [M. S. Almeida and M. A. Figueiredo, IEEE2013];
- TV: $\mathbf{f}^{*}=\arg \min _{\mathfrak{f} \in \Omega_{\mathfrak{f}}}\left\|B\left(\mathbf{k}_{\epsilon}, \mathbf{f}\right)-\mathbf{g}_{\delta}\right\|^{2}+\alpha^{\mathrm{E}}\|\mathbf{f}\|^{2}+\alpha^{\mathrm{TV}}\|\mathbf{f}\|_{T V}$.

Introduction
The problem at hand
Inspiring work
The continuous model
Formulation
Theoretical analysis
Minimization Algorithm
Formulation
Theoretical analysis
Numerical Example
Implementation of SeB-A Constraints
Experiment
Conclusions \& Future work

Numerical Example
 Experiment (continued)

Semi-blind
regularization for inverse problems

Introduction
The problem at hand
Inspiring work
The continuous model
Formulation
Theoretical analysis
Minimization Algorithm
Formulation
Theoretical analysis
Numerical Example

BID-ADMM

CSeB-A

TV

Implementation of SeB-A Constraints
Experiment
Conclusions \& Future work

Dep. of Mathematical Sc.

Numerical Example
 Experiment (continued)

Semi-blind regularization for inverse problems

True

TV

Introduction
The problem at hand
Inspiring work
The continuous model
Formulation
Theoretical analysis
Minimization Algorithm
Formulation
Theoretical analysis
Numerical Example
Implementation of $\mathrm{SeB}-\mathrm{A}$
Constraints
Experiment
Conclusions \& Future work

Dep. of Mathematical Sc. Kent State Univeristy Ohio, USA

Numerical Example
 Experiment (continued)

Semi-blind regularization for inverse problems

Introduction
The problem at hand
Inspiring work
The continuous model
Formulation
Theoretical analysis
Minimization Algorithm
Formulation
Theoretical analysis
Numerical Example
Implementation of SeB-A
Constraints
Experiment
Conclusions \& Future work

CSeB-A

Dep. of Mathematical Sc. Kent State Univeristy

Conclusions \& Future work

We now draw some conclusions

Semi-blind regularization for inverse problems

Introduction
The problem at hand
Inspiring work
The continuous model
Formulation
Theoretical analysis
Minimization Algorithm
Formulation
Theoretical analysis
Numerical Example
Implementation of $\mathrm{SeB}-\mathrm{A}$
Constraints
Experiment
Conclusions \& Future work

Conclusions \& Future work

We now draw some conclusions

Semi-blind regularization for inverse problems

- We have constructed a functional that couples the available informations on the parameter k and the solution

Introduction
The problem at hand
Inspiring work
The continuous model
Formulation
Theoretical analysis
Minimization Algorithm
Formulation
Theoretical analysis
Numerical Example
Implementation of SeB -A
Constraints
Experiment
Conclusions \& Future work

Conclusions \& Future work

We now draw some conclusions

Semi-blind regularization for inverse problems

- We have constructed a functional that couples the available informations on the parameter k and the solution f;
- We have proven several properties of the non-convex and non-smooth constructed functional;

Introduction

The problem at hand
Inspiring work
The continuous model
Formulation
Theoretical analysis
Minimization Algorithm
Formulation
Theoretical analysis
Numerical Example
Implementation of $\mathrm{SeB}-\mathrm{A}$
Constraints
Experiment
Conclusions \& Future work

Conclusions \& Future work

We now draw some conclusions

- We have constructed a functional that couples the available informations on the parameter k and the solution f;
- We have proven several properties of the non-convex and non-smooth constructed functional;
- We have proposed an efficient algorithm to compute a stationary point of (the discrete version of) $J_{\alpha, \beta}^{\delta, \epsilon}(\mathbf{k}, \mathbf{f})$ and proven its convergence.

Semi-blind regularization for inverse problems

Introduction

The problem at hand
Inspiring work
The continuous model
Formulation
Theoretical analysis
Minimization Algorithm
Formulation
Theoretical analysis
Numerical Example
Implementation of $\mathrm{SeB}-\mathrm{A}$
Constraints
Experiment
Conclusions \& Future work

Conclusions \& Future work

We now draw some conclusions

- We have constructed a functional that couples the available informations on the parameter k and the solution f;
- We have proven several properties of the non-convex and non-smooth constructed functional;
- We have proposed an efficient algorithm to compute a stationary point of (the discrete version of) $J_{\alpha, \beta}^{\delta, \epsilon}(\mathbf{k}, \mathbf{f})$ and proven its convergence.

Future work includes

Semi-blind regularization for inverse problems

Introduction

The problem at hand
Inspiring work
The continuous model
Formulation
Theoretical analysis
Minimization Algorithm
Formulation
Theoretical analysis
Numerical Example
Implementation of SeB-A
Constraints
Experiment
Conclusions \& Future work

Conclusions \& Future work

We now draw some conclusions

- We have constructed a functional that couples the available informations on the parameter k and the solution f;
- We have proven several properties of the non-convex and non-smooth constructed functional;
- We have proposed an efficient algorithm to compute a stationary point of (the discrete version of) $J_{\alpha, \beta}^{\delta, \epsilon}(\mathbf{k}, \mathbf{f})$ and proven its convergence.

Future work includes

- Remove the assumption on the boundness of the iterates;

Introduction
The problem at hand
Inspiring work
The continuous model
Formulation

Minimization Algorithm
Formulation
Theoretical analysis
Numerical Example
Implementation of $\mathrm{SeB}-\mathrm{A}$
Constraints
Experiment
Conclusions \& Future work

Theoretical analysis

Semi-blind regularization for inverse problems

Conclusions \& Future work

We now draw some conclusions

- We have constructed a functional that couples the available informations on the parameter k and the solution f;
- We have proven several properties of the non-convex and non-smooth constructed functional;
- We have proposed an efficient algorithm to compute a stationary point of (the discrete version of) $J_{\alpha, \beta}^{\delta, \epsilon}(\mathbf{k}, \mathbf{f})$ and proven its convergence.

Future work includes

Introduction
The problem at hand
Inspiring work
The continuous model
Formulation
Theoretical analysis
Minimization Algorithm
Formulation
Theoretical analysis
Numerical Example
Implementation of SeB-A
Constraints
Experiment
Conclusions \& Future work

- Remove the assumption on the boundness of the iterates;
- Provide rule choices for the parameters;

Conclusions \& Future work

We now draw some conclusions

- We have constructed a functional that couples the available informations on the parameter k and the solution f;
- We have proven several properties of the non-convex and non-smooth constructed functional;
- We have proposed an efficient algorithm to compute a stationary point of (the discrete version of) $J_{\alpha, \beta}^{\delta, \epsilon}(\mathbf{k}, \mathbf{f})$ and proven its convergence.

Future work includes

Semi-blind regularization for inverse problems

Introduction
The problem at hand
Inspiring work
The continuous model
Formulation
Theoretical analysis
Minimization Algorithm
Formulation
Theoretical analysis
Numerical Example
Implementation of $\mathrm{SeB}-\mathrm{A}$
Constraints
Experiment
Conclusions \& Future work

- Remove the assumption on the boundness of the iterates;
- Provide rule choices for the parameters;
- Extend to non-convex priors.

Thank you for your attention!

