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Introduction
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Motivation

Mathematical model for electrodeposition and metal growth

Goals:

m rationalise formation of patterns in
electrochemical process

m control strategy of morphology/composition

Electrodeposition: process
of depositing material
onto a conducting surface
from a solution containing
ionic species, used to
apply thin films of
material to the surface of
an object to change its
external properties

Electrochemical cell
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Fields of applications of electrodeposition:

m Corrosion protection, increase abrasion resistance
(aeronautics...);

m Surface decoration (silver Au plating, jewellery);

m Biomedical materials;

m Heritage (preserving/recovering ancient
materials);

m Energetics (fuel cells, batteries)
a technological challenge:
optimization of novel metal-air batteries:
- energetic efficiency of the recharge process
- durability of the energy storage device.
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PDEs model

Mathematical model for electrodeposition and metal growth

- Morpho-chemical model:
morphology (surface profile) n(x, y, t) € R
surface chemistry (composition) 0 < 6(x,y,t) <1

o1 = An + pf(n, 6)
% = dAb + pg(n, 6)

o> 0and d= g—: dimensionless diffusion coefficient.

- The nonlinear reaction terms f and g account for
generation (deposit) and Loss (corrosion) of the relevant
material:

f(n,8)=Ai(1l—0)n— An*— B(6 —a)
g(n,0) = C(1 + kem)(1 = 6)(1 —¥(1 = 6))
— D(6(1 — ¥8) + ksnb(1 + v6))
- B and C bifurcation parameters, P. = (0, &)
homogeneous steady state.
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PDEs model

Mathematical model for electrodeposition and metal growth
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Bifurcation diagram in the parameter space (C, B)
Spatio-temporal pattern formation due to: TURING instability, HOPF
instability = TURING-HOPF interplay

Lacitignola D, Sgura I and Bozzini B, 2015 Spatio-temporal organization in a morphological
electrodeposition model: Hopf and Turing instabilities and their interplay European Journal of
Applied Mathematics 26 143-173
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Qualitative comparisons

In each panel qualitative comparisons between experimental data (lLeft
microscopy images) and numerical simulations (right images).

Left panel: structured patterns (Labyrinths, spots, spirals); right panel:
unstructured map.

" e A ;7 I
— Next step: ‘q‘uéhtitative comparison between
experimental images and PDEs simulations
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Quantitative comparisons: Identification
Problems (IP)

Given ©%P ¢ RM X" — experimental data given by digital images, given
the integration domain Q X [0, T] and an appropriate numerical method to
solve the PDEs:

Identification Problems
m Parameter Identification Problems (PIP): fixed [0, T], find a set of
parameters p = (p1, ..., Pm) such that:
min J(P) = min ||©(p; T) — ©P||
p p
comparison between experimental images and simulations at final
time T = stationary Turing patterns (spots, Labyrinths...)

m Map Identification Problems (MIP): fixed a set of parameters
p = (pP1, ..., Pm) find t* € [0, T] such that:

min J(t) = |©(p; t) — ©°°|

comparison between experimental images and simulations at each
time step tx, k=1, ..., Nt = unstructured oscillating patterns
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PIP: stationary Turing pattern

Optimization problem solved by a “Discretize-then-optimize" procedure
based on Conjugate gradients method

First guess 0,(xy)

Top Lline: experimental image (left) and first guess pattern for optimization (right). Bottom Line:
optimal pattern ©* (Left) and absolute error Err map (right)

Sgura I, Lawless A S, Bozzini B, 2018 Parameter estimation for a morphochemical
reaction-diffusion model of electrochemical pattern formation, Inverse Problems in Science &
Engineering 8/12
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MIP: oscillating - unstructured pattern

B My = %P € Rm*X": experimental XRF data image

m Given a set of parameters (B, C) in the Turing-Hopf
zone (oscillating PDEs solutions)

B ey(t) = |My — O(t)] € R™m*™: absolute error matrix
Y
af.’, i=1,...,p=min{ny, n2}: singular values of ey(t)
Find: minimum of the first singular value:
oi(t) = min_of(t)

te[o, 7]
= 0" =0(t;) = Ms
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MIP: oscillating - unstructured pattern

Data: top Line: Mn-Co-based electrocatalyst; bottom Line: Mn-Ag-based
electrocatalyst. Original XRF data images (left column), MIPg solutions
(middLe column), time dynamics of the first singular value and Frobenius

errors (right column).

Sgura I and Bozzini B 2017 XRF map identification problems based on a PDE electrodeposition
model J. Phys. D: Appl. Phys. 50 154002 doi:10.1088/1361-6463/aa5alf
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Remarks

m The information of the first singular value o1(t) is
not enough to ensure a minimization process that
takes into account the full structure of the
original data images

a; (tj= SV, it}

Time behavior of af(t), fori=1,..,p.

m Open problem: Identification Problem: MIP +
PIP (optimization in time and parameters)
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