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Preconditioning with the GMRES Polynomial:

Used for
GMRES [Liu, Morgan, Wilcox]
BiCGStab and IDR [L., Morgan]
Arnoldi for Eigenvalues [Embree, L., Morgan]
Communication Avoiding with GMRES [Boman, L., Thornquist]

Can we use it for ill-posed problems?
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Using GMRES Algorithms:

GMRES: [Saad, Schultz]
Solves large, sparse linear systems Ax = b
For nonsymmetric systems
Works better if small eigenvalues of A are well-spaced and others
are clustered near 1.
Can solve preconditioned system AMy = b, x = My
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GMRES Algorithm

Big idea: Build a basis for Krylov subspace

K(A,b) = span{b,Ab,A2b, . . . ,Am−1b}.

Pick a good approximate solution from K(A,b).

1. Multiply A (or AM) times previous basis vector.
2. Orthogonalize against the previous basis vectors. (Gram-Schmidt)
3. Solve a small Hessenberg system.
4. Restart when subspace gets too large.
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Orthogonalization:

Figure: More vectors =⇒ more work to keep them in line...
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Polynomial Preconditioning with The GMRES
Polynomial

Solve Ap(A)p(A)−1x = b where p(A) is the GMRES polynomial.
Separates small eigenvalue of A and clusters others near 1.
More power for each step of orthogonalization!
No need to solve linear system to apply preconditioner.
No eigenvalue estimates needed.
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Computing the Polynomial

[Liu, Morgan, Wilcox]
1. Build a power basis V = [b,Ab, . . . ,Amb].
2. Solve the normal equations

(AV )∗AVy = (AV )∗b.

3. The elements of y are the coefficients of p(A).

p(A) = ym+1Am + ymAm−1 + · · ·+ y2A + y1
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Improving Convergence for Restarted GMRES
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Figure: Residual norm convergence for the matrix e20r0100 with a random
right-hand side. Subspace size = 50. Degree 0 indicates no preconditioning.
All tests were run to 200000 max iterations.
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GMRES Algorithm

Big idea: Build a basis for Krylov subspace

K(A,b) = span{b,Ab,A2b, . . . ,Am−1b}.

Pick a good approximate solution from K(A,b).

1. Multiply A (or AM) times previous basis vector.
2. Orthogonalize against the previous basis vectors. (Gram-Schmidt)
3. Solve a small Hessenberg system.
4. Restart when subspace gets too large.

For RRGMRES: Use subspace K(A,Ab) = span{Ab,A2b, . . . ,Amb}.
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Using GMRES Algorithms:

GMRES: [Saad, Schultz]
Solves large, sparse linear systems Ax = b
For nonsymmetric systems
Works better if small eigenvalues of A are well-spaced and others
are clustered near 1.
Can solve preconditioned system AMy = b, x = My

RRGMRES: [Calvetti, Lewis, Reichel]
Better for noisy right-hand side
Want to cluster large eigenvalues near 1 and ignore small
eigenvalues.
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A Simple RRGMRES Example (no restarting):

n = 10000
A = diag(0, .1, .2, . . . ,1.9,2,3,4, . . . ,9981)
Put A(500,500) = 0 and A(5000,5000) = 0.
b = [1,1, . . . ,1]T

rtol ≈ 1.731

Poly Deg Iters MVPs Time (s)
0 1252 1252 143.6
5 324 2926 6.59
10 171 3269 1.87
15 116 3394 1.08
20 88 3472 0.65
25 71 3529 0.48
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A Deblurring Problem:

(a) Original Image (b) Blurred with Noise
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With Poly Preconditioning:

Using a polynomial preconditioner of Degree = 10:

(a) Iteration 2 (30 mvps) (b) Iteration 4 (50 mvps)
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Another Polynomial:

GMRES Polynomial:

RRGMRES Polynomial:
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Poly Preconditioning Try 2:

Using an RRGMRES polynomial preconditioner of Degree = 10:

(a) Iteration 2 (31 mvps) (b) Iteration 4 (51 mvps)
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Does it really need a polynomial?

RRGMRES with no preconditioner:

(a) Iteration 1 (b) Iteration 51 (51 mvps)
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A final comparison:

(a) Blurred and Noisy (b) RRGMRES Only

(c) GMRES Poly Prec (d) RRGMRES Poly Prec
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Future Challenges:

Can we use polynomial preconditioning to reduce expenses for
RRGMRES and/or image deblurring? (Perhaps combined with other
regularization? Different problems? Lower degree polynomial?)
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To Be Determined...

Jennifer Loe Baylor University 23 May 2018 21 / 21


