Polynomial Preconditioning for RRGMRES

Jennifer Loe, Ron Morgan

Baylor University

23 May 2018

lon	init	or	
		er	LUE

-

Preconditioning with the GMRES Polynomial:

Used for

- GMRES [Liu, Morgan, Wilcox]
- BiCGStab and IDR [L., Morgan]
- Arnoldi for Eigenvalues [Embree, L., Morgan]
- Communication Avoiding with GMRES [Boman, L., Thornquist]

Preconditioning with the GMRES Polynomial:

Used for

- GMRES [Liu, Morgan, Wilcox]
- BiCGStab and IDR [L., Morgan]
- Arnoldi for Eigenvalues [Embree, L., Morgan]
- Communication Avoiding with GMRES [Boman, L., Thornquist]

Can we use it for ill-posed problems?

GMRES: [Saad, Schultz]

- Solves large, sparse linear systems Ax = b
- For nonsymmetric systems
- Works better if small eigenvalues of *A* are well-spaced and others are clustered near 1.
- Can solve preconditioned system AMy = b, x = My

$$\mathcal{K}(A,b) = span\{b, Ab, A^2b, \dots, A^{m-1}b\}.$$

Pick a good approximate solution from $\mathcal{K}(A, b)$.

< ロ > < 同 > < 回 > < 回 >

$$\mathcal{K}(A,b) = span\{b, Ab, A^2b, \dots, A^{m-1}b\}.$$

Pick a good approximate solution from $\mathcal{K}(A, b)$.

- 1. Multiply A (or AM) times previous basis vector.
- 2. Orthogonalize against the previous basis vectors. (Gram-Schmidt)
- 3. Solve a small Hessenberg system.
- 4. Restart when subspace gets too large.

$$\mathcal{K}(A,b) = span\{b, Ab, A^2b, \dots, A^{m-1}b\}.$$

Pick a good approximate solution from $\mathcal{K}(A, b)$.

- 1. Multiply A (or AM) times previous basis vector.
- 2. Orthogonalize against the previous basis vectors. (Gram-Schmidt)
- 3. Solve a small Hessenberg system.
- 4. Restart when subspace gets too large.

Orthogonalization:

Figure: More vectors \implies more work to keep them in line...

Jennifer Loe

Polynomial Preconditioning with The GMRES Polynomial

Solve $Ap(A)p(A)^{-1}x = b$ where p(A) is the GMRES polynomial.

- Separates small eigenvalue of A and clusters others near 1.
- More power for each step of orthogonalization!
- No need to solve linear system to apply preconditioner.
- No eigenvalue estimates needed.

[Liu, Morgan, Wilcox]

- 1. Build a power basis $V = [b, Ab, \dots, A^m b]$.
- 2. Solve the normal equations

$$(AV)^*AVy = (AV)^*b.$$

3. The elements of *y* are the coefficients of p(A).

$$p(A) = y_{m+1}A^m + y_mA^{m-1} + \cdots + y_2A + y_1$$

イロト イ団ト イヨト イヨト

Improving Convergence for Restarted GMRES

Figure: Residual norm convergence for the matrix e20r0100 with a random right-hand side. Subspace size = 50. Degree 0 indicates no preconditioning. All tests were run to 200000 max iterations.

$$\mathcal{K}(A,b) = span\{b, Ab, A^2b, \dots, A^{m-1}b\}.$$

Pick a good approximate solution from $\mathcal{K}(A, b)$.

- 1. Multiply A (or AM) times previous basis vector.
- 2. Orthogonalize against the previous basis vectors. (Gram-Schmidt)
- 3. Solve a small Hessenberg system.
- 4. Restart when subspace gets too large.

For **RRGMRES**: Use subspace $\mathcal{K}(A, Ab) = span\{Ab, A^2b, \dots, A^mb\}$.

イロト イポト イヨト イヨト 二日

$$\mathcal{K}(A,b) = span\{b, Ab, A^2b, \dots, A^{m-1}b\}.$$

Pick a good approximate solution from $\mathcal{K}(A, b)$.

- 1. Multiply A (or AM) times previous basis vector.
- 2. Orthogonalize against the previous basis vectors. (Gram-Schmidt)
- 3. Solve a small Hessenberg system.
- 4. Restart when subspace gets too large.

For **RRGMRES**: Use subspace $\mathcal{K}(A, Ab) = span\{Ab, A^2b, \dots, A^mb\}$.

イロト イポト イヨト イヨト ニヨー

GMRES: [Saad, Schultz]

- Solves large, sparse linear systems Ax = b
- For nonsymmetric systems
- Works better if small eigenvalues of A are well-spaced and others are clustered near 1.
- Can solve preconditioned system AMy = b, x = My

RRGMRES: [Calvetti, Lewis, Reichel]

- Better for noisy right-hand side
- Want to cluster large eigenvalues near 1 and ignore small eigenvalues.

イロト イポト イヨト イヨト 一日

A Simple RRGMRES Example (no restarting):

```
n = 10000

A = diag(0, .1, .2, ..., 1.9, 2, 3, 4, ..., 9981)

Put A(500, 500) = 0 and A(5000, 5000) = 0.

b = [1, 1, ..., 1]^T

rtol \approx 1.731
```

Poly Deg	Iters	MVPs	Time (s)
0	1252	1252	143.6
5	324	2926	6.59
10	171	3269	1.87
15	116	3394	1.08
20	88	3472	0.65
25	71	3529	0.48

イロト イポト イヨト イヨト 二日

A Deblurring Problem:

(a) Original Image

(b) Blurred with Noise

イロト イポト イヨト イヨト 二日

With Poly Preconditioning:

Using a polynomial preconditioner of Degree = 10:

(a) Iteration 2 (30 mvps)

(b) Iteration 4 (50 mvps)

< ロ > < 同 > < 回 > < 回 >

Or	m	tor	$\sim \sim$

Another Polynomial:

GMRES Polynomial:

RRGMRES Polynomial:

Poly Preconditioning Try 2:

Using an RRGMRES polynomial preconditioner of Degree = 10:

(a) Iteration 2 (31 mvps)

(b) Iteration 4 (51 mvps)

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

	0	n	n	to	× .		0	0
. U						_	υ	C

Does it really need a polynomial?

RRGMRES with no preconditioner:

(a) Iteration 1

(b) Iteration 51 (51 mvps)

イロト イポト イヨト イヨト

A final comparison:

(a) Blurred and Noisy

(b) RRGMRES Only

(d) RRGMRES Poly Prec

(c) GMRES Poly Prec

Baylor University

23 May 2018 19 / 21

Future Challenges:

Can we use polynomial preconditioning to reduce expenses for RRGMRES and/or image deblurring? (Perhaps combined with other regularization? Different problems? Lower degree polynomial?)

.

To Be Determined...

The daydreams of cat herders

	\mathbf{n}	nn		\sim
ັ	σı			ue.

■ ◆ ■ ▶ ■ • つへの 23 May 2018 21/21

イロト イヨト イヨト イヨト