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Review: Regularization by SVD Filtering
Suppose A = UΣVT , and b = Ax true + η = b true + η.

Naive inverse solution, x inv = A−1b = VΣ−1UTb

x inv =
n∑

i=1

uTi b

σi
vi =

n∑
i=1

uTi b true

σi
vi︸ ︷︷ ︸

x true

+
n∑

i=1

uTi η

σi
vi︸ ︷︷ ︸

error

The goal is to balance:

reconstructing “good” SVD components:
uTi b true

σi
(large σi )

avoid reconstructing “bad” SVD components
uTi η

σi
(small σi )

SVD Filtering

xfilt =
n∑

i=1

φi
uTi b

σi
vi , where φi ≈

{
1 for “large” σi
0 for “small” σi

Examples: TSVD, Tikhonov, Exponential
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Review: Filtering and Large Scale Problems

Computing the SVD for large problems can be very expensive.

Exceptions for some structured matrices:

Kronecker products: If A = Ar ⊗ Ac , then

A =
(
UrΣrV

T
r

)
⊗
(
UcΣcV

T
c

)
= (Ur ⊗Uc) (Σr ⊗Σv ) (Vr ⊗ Vc)

Circulant matrices: Instead of using singular value decomposition, use
spectral value decomposition:

A = F∗ΛF

where F is the Fourier transform matrix, and F∗F = I.
Other structures that admit efficient spectral decompositions.
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Iterative Methods: Introduction

Remarks:

If A is not too large, we can use SVD filtering methods.

In case of large scale problems, filtering methods can be used if A has
exploitable structure (e.g., Kronecker product, Circulant)

We need to use iterative methods when A is very large, and

We cannot efficiently compute SVD of A.
We want to enforce constraints, such as nonnegativity.
We want to incorporate (non-periodic) boundary conditions.
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Iterative Methods: Introduction

Consider the general inverse problem: b = Ax + e

We know that

x inv = A−1b or xLS = arg min
x
‖b− Ax‖2

is a poor solution.

Assume we cannot efficiently use FFT based, SVD, or other transform
based filtering.

However, we can efficiently compute multiplications:

Az and ATz

for example, if A is sparse and/or structured.

Then we can use iterative methods.
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Iterative Methods: Introduction

Some approaches to using iterative methods:

1 Apply iterative method to variational form of regularization:

min
x
‖b− Ax‖2 + α2‖Lx‖22

2 Apply iterative method directly to

min
x
‖b− Ax‖2

enforce regularization by stopping iteration early.

3 Combine the two approaches ⇒ Hybrid Method
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Introduction and Motivation

Motivation for IR Tools

Provide easy to use MATLAB codes for

Methods to solve large-scale, linear ill-posed inverse problems.

Test problems (large scale) to evaluate new algorithms.

Package can be used in many ways:

Use our implementations to solve your problems.

Experiment with different regularization approaches, constraints, etc.

Use our test problems to evaluate your new algorithms.

Compare your best/new algorithms with our implementations.
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Test Problems

IR Tools: Test Problems

Test problem type Functions

Image deblurring PRblur (generic function)
– spatially invariant blur PRblurdefocus, PRdeblurgauss,

PRdeblurmotion, PRdelburshake,
PRdeblurspeckle

– spatially variant blur PRblurrotation

Inverse diffusion PRdiffusion

Inverse interpolation PRinvinterp2

NMR relaxometry PRnmr

Tomography
– seismic travel-time tomography PRseismic

– spherical means tomography PRspherical

– X-ray computed tomography PRtomo

Add noise to the exact data:
Gauss, Laplace, multiplicative

PRnoise

Visualize the data b and the solution x PRshowb, PRshowx
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Test Problems

Current Solvers in IRtools

Problem type Functions

minx ‖Ax − b‖2
+ semi-convergence

IRart, IRcgls, IRenrich, IRsirt,
IRrrgmres

minx ‖Ax − b‖2 s.t. x ≥ 0
+ semi-convergence

IRmrnsd, IRnnfcgls

minx ‖Ax − b‖2 s.t. x ∈ C
+ semi-convergence

IRconstr ls, IRfista

minx ‖Ax − b‖2 + α‖L x‖2 IRcgls, IRhybrid lsqr,
IRhybrid gmres

minx ‖Ax − b‖2 +α‖L x‖2 s.t. x ∈ C IRconstr ls, IRfista
minx ‖Ax − b‖2 + α‖x‖1 IRell1, IRhybrid fgmres, IRirn
minx ‖Ax − b‖2 + α‖x‖1 s.t. x ≥ 0 IRirn

minx ‖Ax − b‖2 + αTV(x)
with or without constraint x ≥ 0

IRhtv
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Test Problems

Current Solvers in IRtools

Each iterative method can be used in one of the following ways:

[x, IterInfo] = IRxxxx(A, b);

[x, IterInfo] = IRxxxx(A, b, K, options);

where

A can be a sparse matrix, user defined object, or function handle.

b is a vector.

K specifies iterations to be returned in X.

can change default options using IRset.
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Examples

Example

First setup tomography test problem:

spine = double(imread(’spine.tif’));

options = PRset(’phantomImage’, spine);

[A, b true, x true, ProbInfo] = PRtomo(options);

[b, NoiseInfo] = PRnoise(b true);

Use IRcgls to attempt to solve, with all default algorithm parameters:

x = IRcgls(A, b);

Solution is over-fitted (too noisy). Investigate further using true solution:

options = IRcgls(’defaults’);

options = IRset(options, ’x true’, x true);

[x, IterInfo] = IRcgls(A, b, options);

Plot IterInfo.Enrm to see semi-convergence behavior, and display
solution where error is minimized:

PRshowx(IterInfo.BestReg.X, ProbInfo)
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Examples

LSQR Hybrid Method

Based on Golub-Kahan (Lanczos) Bidiagonalization (GKBD):

Given A and b, for k = 1, 2, ..., compute

Wk =
[
w1 w2 · · · wk wk+1

]
, w1 = b/||b||

Zk =
[
z1 z2 · · · zk

]

Bk =


α1

β2 α2

. . .
. . .

βk αk

βk+1


where Wk and Zk have orthonormal columns, and

ATWk = ZkB
T
k + αk+1zk+1e

T
k+1

AZk = WkBk
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Examples

GKBD and LSQR

At kth GKBD iteration, use QR to solve projected LS problem:

min
x∈R(Zk )

‖b− Ax‖22 = min
x
‖WT

k b− Bkx‖22 = min
x
‖βe1 − Bkx‖22

where xk = Zkx

For our ill-posed inverse problems:

Singular values of Bk converge to k largest sing. values of A.

Thus, xk is in a subspace that approximates a subspace spanned by
the large singular components of A.

For k < n, xk is a regularized solution.
xn = x inv = A−1b (bad approximation)
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Examples

Example: Inverse Heat Equation

Singular values of Bk converge to large singular values of A.
Thus, for early iterations k : x = Bk \Wkb

xk = Zkx
is a regularized reconstruction. Thus, for later iterations k :
x = Bk \Wkb

xk = Zkx
is a noisy reconstruction.
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Examples

Example: Inverse Heat Equation

Singular values of Bk converge to large singular values of A.
Thus, for early iterations k : x = Bk \Wkb

xk = Zkx
is a regularized reconstruction. Thus, for later iterations k :
x = Bk \Wkb

xk = Zkx
is a noisy reconstruction.
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Examples

Example: Inverse Heat Equation

Singular values of Bk converge to large singular values of A.
Thus, for early iterations k : x = Bk \Wkb

xk = Zkx
is a regularized reconstruction. Thus, for later iterations k :
x = Bk \Wkb

xk = Zkx
is a noisy reconstruction.
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Examples

Example: Inverse Heat Equation

Singular values of Bk converge to large singular values of A.
Thus, for early iterations k : x = Bk \Wkb

xk = Zkx
is a regularized reconstruction. Thus, for later iterations k :
x = Bk \Wkb

xk = Zkx
is a noisy reconstruction.
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Examples

Golub-Kahan Based Hybrid Methods

To avoid noisy reconstructions, embed regularization in LBD:

O’Leary and Simmons, SISSC, 1981.

Björck, BIT 1988.

Björck, Grimme, and Van Dooren, BIT, 1994.

Larsen, PhD Thesis, 1998.

Hanke, BIT 2001.

Kilmer and O’Leary, SIMAX, 2001.

Kilmer, Hansen, Español, SISC 2007.

Chung, N, O’Leary, ETNA 2007
(IRhybrid lsqr Implementation)

Note: There is also a lot of work on Arnoldi-Tikhonov hybrid methods; see
work by Reichel (and collaborators), and Gazzola and Novati.
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Examples

Regularize the Projected Least Squares Problem

To stabilize convergence, regularize the projected problem:

min
x

∥∥∥∥[ βe1
0

]
−
[

Bk

λI

]
x

∥∥∥∥2
2

Note: Bk is very small compared to A, so

Can use “expensive” methods to choose λ (e.g., GCV)

Can also use GCV information to estimate stopping iteration
(Björck, Grimme, and Van Dooren, BIT, 1994).
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Examples

Example: Inverse Heat Equation

LSQR (no regularization) HyBR (Tikhonov regularization)

x = Bk \Wkb x =

[
Bk

λk I

] ∖[
Wkb
0

]
xk = Zkx xk = Zkx
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Examples

Example: Inverse Heat Equation

LSQR (no regularization) HyBR (Tikhonov regularization)

x = Bk \Wkb x =

[
Bk

λk I

] ∖[
Wkb
0

]
xk = Zkx xk = Zkx
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Examples

Example: Inverse Heat Equation

LSQR (no regularization) HyBR (Tikhonov regularization)

x = Bk \Wkb x =

[
Bk

λk I

] ∖[
Wkb
0

]
xk = Zkx xk = Zkx
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Examples

Example: Inverse Heat Equation

LSQR (no regularization) HyBR (Tikhonov regularization)

x = Bk \Wkb x =

[
Bk

λk I

] ∖[
Wkb
0

]
xk = Zkx xk = Zkx
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Examples

Regularize the Projected Least Squares Problem

To stabilize convergence, regularize the projected problem:

min
x

∥∥∥∥[ βe1
0

]
−
[

Bk

λI

]
x

∥∥∥∥2
2

Problems choosing regularization parameters:

Very little regularization is needed in early iterations.

GCV tends to choose too large λ for bidiagonal system.
Our remedy: Use a weighted GCV (Chung, N, O’Leary, 2007)

Can also use WGCV information to estimate stopping iteration
(approach similar to Björck, Grimme, and Van Dooren, BIT, 1994).
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Examples

Weighted GCV

If GCV tends to over or under smooth for class of problems, use:

GCV (λ) =
n||(I − AA†

λ)b||2[
trace(I − ωAA†

λ)
]2

ω = 1 ⇒ standard GCV

ω > 1 ⇒ smoother solutions

ω < 1 ⇒ less smooth solutions

Weighted GCV used in:

Friedman, Silverman (Technometrics, 1989)

Nychka, et al. (FUNFITS statistical toolbox, 1998)

Cummins, Filloon, Nychka (J. Am. Stat. Assoc., 2001)

Kim, Gu (Royal Stat. Soc. B, 2004)
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Examples

Interpretations of Modified GCV

Weighted “leave-one-out” prediction method.

trace
(
I − ωAA†

λ

)
=

n∑
i=1

(1− φi ) + (1− ω)
n∑

i=1

φi ,

where φi =
σ2i

σ2i + λ2
(Tikhonov SVD filter factors)

If ω > 1, modified GCV function has poles when
n∑

i=1

φi =
n

ω
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Examples

How to choose ω?

GCV chooses too large λk at each iteration.

If we know λk,opt , find ω by solving

∂

∂λ
[G (ω, λ)]

∣∣∣∣
λ=λk,opt

= 0

At early iterations, we need little or no regularization, so

0 ≤ λk,opt ≤ σmin (Bk)

Adaptive approach:
Find ω̂k corresponding to λk,opt = σmin (Bk)
Use ωk =mean{ω̂1, ω̂2, . . . , ω̂k}

Inverse Problems in Imaging James Nagy



Examples

Examples: Regularization Tools, phillips
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Examples

Examples: Regularization Tools, shaw
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Examples

Examples: Regularization Tools, deriv2
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Examples

Examples: Regularization Tools, baart
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Examples

Examples: Regularization Tools, heat
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Examples

Example

Recall our previous example with the tomography test problem.

We used IRcgls, which didn’t enforce any regularization, and wasn’t
able to determine a good stopping iteration without any additional
information.

Now try a hybrid method, which will use Tikhonov regularization, and
GCV to stop iterations, as described on the previous slides:

[x, IterInfo] = IRhybrid lsqr(A, b);

PRshowx(x, ProbInfo)

Inverse Problems in Imaging James Nagy



Examples

Exercise: See if you can reconstruct problems created by someone else:

Go to https://www.fips.fi/dataset.php
Scroll to nearly bottom of page, and grab mat files:

DataFull 128x15.mat

DataFull 128x45.mat

DataFull 128x180.mat

Load one of the data sets, say:
load DataFull 128x15.mat

For convenience manually set ProbInfo structure:
ProbInfo.problemType = ’tomography’;

ProbInfo.xType = ’image2D’;

ProbInfo.xType = ’image2D’;

ProbInfo.xSize = [128, 128];

ProbInfo.bSize = size(m);

Reshape sinogram data m as a vector b:
b = m(:);

Solve using some of the IRxxxx methods. For example,
[x, IterInfo] = IRhybrid lsqr(A, b);

Display using PRshowx:
PRshowx(x, ProbInfo)
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