Lake Como School for Advanced Studies

Computational Methods for Inverse Problems and Applications in Image Processing

Software for Iterative Solvers

James Nagy

Emory University Atlanta, GA USA

Review: Regularization by SVD Filtering

Suppose $\mathbf{A} = \mathbf{U} \Sigma \mathbf{V}^{\mathsf{T}}$, and $\mathbf{b} = \mathbf{A} \mathbf{x}_{true} + \boldsymbol{\eta} = \mathbf{b}_{true} + \boldsymbol{\eta}$.

Naive inverse solution, $\mathbf{x}_{\mathrm{inv}} = \mathbf{A}^{-1}\mathbf{b} = \mathbf{V}\boldsymbol{\Sigma}^{-1}\mathbf{U}^{\mathsf{T}}\mathbf{b}$

$$\mathbf{x}_{inv} = \sum_{i=1}^{n} \frac{\mathbf{u}_{i}^{T} \mathbf{b}}{\sigma_{i}} \mathbf{v}_{i} = \underbrace{\sum_{i=1}^{n} \frac{\mathbf{u}_{i}^{T} \mathbf{b}_{true}}{\sigma_{i}}}_{\mathbf{x}_{true}} \mathbf{v}_{i} + \underbrace{\sum_{i=1}^{n} \frac{\mathbf{u}_{i}^{T} \boldsymbol{\eta}}{\sigma_{i}}}_{\text{error}} \mathbf{v}_{i}$$

The goal is to balance:

• reconstructing "good" SVD components: $\frac{\mathbf{u}_i^T \mathbf{b}_{\text{true}}}{\sigma_i}$ (large σ_i) • avoid reconstructing "bad" SVD components $\frac{\mathbf{u}_i^T \boldsymbol{\eta}}{\sigma_i}$ (small σ_i)

SVD Filtering

$$\mathbf{x}_{\text{filt}} = \sum_{i=1}^{n} \phi_{i} \frac{\mathbf{u}_{i}^{T} \mathbf{b}}{\sigma_{i}} \mathbf{v}_{i}, \quad \text{where} \quad \phi_{i} \approx \begin{cases} 1 & \text{for "large" } \sigma_{i} \\ 0 & \text{for "small" } \sigma_{i} \end{cases}$$

Examples: TSVD, Tikhonov, Exponential

Review: Filtering and Large Scale Problems

- Computing the SVD for large problems can be very expensive.
- Exceptions for some structured matrices:
 - Kronecker products: If $\mathbf{A} = \mathbf{A}_r \otimes \mathbf{A}_c$, then

$$\begin{aligned} \mathbf{A} &= & \left(\mathbf{U}_r \boldsymbol{\Sigma}_r \mathbf{V}_r^T\right) \otimes \left(\mathbf{U}_c \boldsymbol{\Sigma}_c \mathbf{V}_c^T\right) \\ &= & \left(\mathbf{U}_r \otimes \mathbf{U}_c\right) \left(\boldsymbol{\Sigma}_r \otimes \boldsymbol{\Sigma}_v\right) \left(\mathbf{V}_r \otimes \mathbf{V}_c\right) \end{aligned}$$

• Circulant matrices: Instead of using singular value decomposition, use spectral value decomposition:

$$\mathsf{A} = \mathcal{F}^* \Lambda \mathcal{F}$$

where \mathcal{F} is the Fourier transform matrix, and $\mathcal{F}^*\mathcal{F} = \mathbf{I}$.

• Other structures that admit efficient spectral decompositions.

Iterative Methods: Introduction

Remarks:

- If **A** is not too large, we can use SVD filtering methods.
- In case of large scale problems, filtering methods can be used if **A** has exploitable structure (e.g., Kronecker product, Circulant)
- We need to use iterative methods when A is very large, and
 - We cannot efficiently compute SVD of **A**.
 - We want to enforce constraints, such as nonnegativity.
 - We want to incorporate (non-periodic) boundary conditions.

Iterative Methods: Introduction

- Consider the general inverse problem: $\mathbf{b} = \mathbf{A}\mathbf{x} + \mathbf{e}$
- We know that

 $\mathbf{x}_{\mathrm{inv}} = \mathbf{A}^{-1} \mathbf{b} \qquad \text{or} \qquad \mathbf{x}_{\mathrm{LS}} = \arg\min \|\mathbf{b} - \mathbf{A}\mathbf{x}\|_2$

- is a poor solution.
- Assume we cannot efficiently use FFT based, SVD, or other transform based filtering.
- However, we can efficiently compute multiplications:

Az and
$$\mathbf{A}^T \mathbf{z}$$

for example, if **A** is sparse and/or structured.

• Then we can use iterative methods.

Iterative Methods: Introduction

Some approaches to using iterative methods:

- Apply iterative method to variational form of regularization: $\min_{\mathbf{x}} \|\mathbf{b} - \mathbf{A}\mathbf{x}\|_2 + \alpha^2 \|\mathbf{L}\mathbf{x}\|_2^2$
- Apply iterative method directly to

 $\min_{\mathbf{x}} \|\mathbf{b} - \mathbf{A}\mathbf{x}\|_2$

enforce regularization by stopping iteration early.

 $\textbf{S} \quad \text{Combine the two approaches} \Rightarrow \text{Hybrid Method}$

Silvia Gazzola	Per Christian Hansen	James Nagy
University of Bath, UK	Tech. Univ. of Denmark	Emory University, USA
S.Gazzola@bath.ac.uk	pcha@dtu.dk	jnagy@emory.edu

Inverse Problems in Imaging

James Nagy

Motivation for IR Tools

Provide easy to use MATLAB codes for

- Methods to solve large-scale, linear ill-posed inverse problems.
- Test problems (large scale) to evaluate new algorithms.

Package can be used in many ways:

- Use our implementations to solve your problems.
- Experiment with different regularization approaches, constraints, etc.
- Use our test problems to evaluate your new algorithms.
- Compare your best/new algorithms with our implementations.

IR Tools: Test Problems

Test problem type	Functions
Image deblurring	PRblur (generic function)
 spatially invariant blur 	PRblurdefocus, PRdeblurgauss,
	PRdeblurmotion, PRdelburshake,
	PRdeblurspeckle
– spatially variant blur	PRblurrotation
Inverse diffusion	PRdiffusion
Inverse interpolation	PRinvinterp2
NMR relaxometry	PRnmr
Tomography	
 seismic travel-time tomography 	PRseismic
 spherical means tomography 	PRspherical
 – X-ray computed tomography 	PRtomo
Add noise to the exact data:	PRnoise
Gauss, Laplace, multiplicative	
Visualize the data b and the solution x	PRshowb, PRshowx

Current Solvers in IRtools

Problem type	Functions
$\min_{x} \ Ax - b\ _2$	IRart, IRcgls, IRenrich, IRsirt,
+ semi-convergence	IRrrgmres
$\min_x \ Ax - b\ _2$ s.t. $x \ge 0$	IRmrnsd, IRnnfcgls
+ semi-convergence	
$\min_{x} \ Ax - b\ _2$ s.t. $x \in C$	IRconstr_ls, IRfista
+ semi-convergence	
$\min_{x} \ Ax - b\ _2 + \alpha \ Lx\ _2$	IRcgls, IRhybrid_lsqr,
	IRhybrid_gmres
$\min_{x} \ Ax - b\ _2 + \alpha \ Lx\ _2 \text{ s.t. } x \in \mathcal{C}$	IRconstr_ls, IRfista
$\min_{x} \ Ax - b\ _2 + \alpha \ x\ _1$	IRell1, IRhybrid_fgmres, IRirn
$\min_{x} \ Ax - b\ _{2} + \alpha \ x\ _{1} \text{ s.t. } x \ge 0$	IRirn
$\min_{x} \ Ax - b\ _2 + \alpha TV(x)$	IRhtv
with or without constraint $x \ge 0$	

Current Solvers in IRtools

Each iterative method can be used in one of the following ways:

```
[x, IterInfo] = IRxxxx(A, b);
```

```
[x, IterInfo] = IRxxxx(A, b, K, options);
```

where

- A can be a sparse matrix, user defined object, or function handle.
- b is a vector.
- K specifies iterations to be returned in X.
- can change default options using IRset.

First setup tomography test problem:

```
spine = double(imread('spine.tif'));
options = PRset('phantomImage', spine);
[A, b_true, x_true, ProbInfo] = PRtomo(options);
[b, NoiseInfo] = PRnoise(b_true);
```

Use IRcg1s to attempt to solve, with all default algorithm parameters:

x = IRcgls(A, b);

Solution is over-fitted (too noisy). Investigate further using true solution:

```
options = IRcgls('defaults');
options = IRset(options, 'x_true', x_true);
[x, IterInfo] = IRcgls(A, b, options);
```

Plot IterInfo.Enrm to see semi-convergence behavior, and display solution where error is minimized:

```
PRshowx(IterInfo.BestReg.X, ProbInfo)
```

LSQR Hybrid Method

Based on Golub-Kahan (Lanczos) Bidiagonalization (GKBD):

Given **A** and **b**, for k = 1, 2, ..., compute

•
$$\mathbf{W}_{k} = \begin{bmatrix} \mathbf{w}_{1} & \mathbf{w}_{2} & \cdots & \mathbf{w}_{k} & \mathbf{w}_{k+1} \end{bmatrix}, \quad \mathbf{w}_{1} = \mathbf{b}/||\mathbf{b}|$$

• $\mathbf{Z}_{k} = \begin{bmatrix} \mathbf{z}_{1} & \mathbf{z}_{2} & \cdots & \mathbf{z}_{k} \end{bmatrix}$
• $\mathbf{B}_{k} = \begin{bmatrix} \alpha_{1} & & & \\ \beta_{2} & \alpha_{2} & & \\ & \ddots & \ddots & \\ & & \beta_{k} & \alpha_{k} \\ & & & & \beta_{k+1} \end{bmatrix}$

where \mathbf{W}_k and \mathbf{Z}_k have orthonormal columns, and

$$\mathbf{A}^{\mathsf{T}}\mathbf{W}_{k} = \mathbf{Z}_{k}\mathbf{B}_{k}^{\mathsf{T}} + \alpha_{k+1}\mathbf{z}_{k+1}\mathbf{e}_{k+1}^{\mathsf{T}}$$
$$\mathbf{A}\mathbf{Z}_{k} = \mathbf{W}_{k}\mathbf{B}_{k}$$

GKBD and LSQR

At *k*th GKBD iteration, use *QR* to solve *projected* LS problem:

$$\min_{\mathbf{x}\in R(\mathbf{Z}_k)} \|\mathbf{b} - \mathbf{A}\mathbf{x}\|_2^2 = \min_{\mathbf{x}} \|\mathbf{W}_k^T \mathbf{b} - \mathbf{B}_k \mathbf{x}\|_2^2 = \min_{\mathbf{x}} \|\beta \mathbf{e}_1 - \mathbf{B}_k \mathbf{x}\|_2^2$$

where $\mathbf{x}_k = \mathbf{Z}_k \mathbf{x}$

For our ill-posed inverse problems:

- Singular values of \mathbf{B}_k converge to k largest sing. values of \mathbf{A} .
- Thus, **x**_k is in a subspace that approximates a subspace spanned by the large singular components of **A**.
 - For k < n, \mathbf{x}_k is a regularized solution.
 - $\mathbf{x}_n = \mathbf{x}_{inv} = \mathbf{A}^{-1}\mathbf{b}$ (bad approximation)

Singular values of \mathbf{B}_k converge to large singular values of \mathbf{A} . Thus, for early iterations k: $\mathbf{x} = \mathbf{B}_k \setminus \mathbf{W}_k \mathbf{b}$

$$\mathbf{x}_k = \mathbf{Z}_k \mathbf{x}$$

$$\mathbf{x}_k = \mathbf{Z}_k \mathbf{x}$$

Inverse Problems in Imaging

Singular values of \mathbf{B}_k converge to large singular values of \mathbf{A} . Thus, for early iterations k: $\mathbf{x} = \mathbf{B}_k \setminus \mathbf{W}_k \mathbf{b}$

$$\mathbf{x}_k = \mathbf{Z}_k \mathbf{x}$$

$$\mathbf{x}_k = \mathbf{Z}_k \mathbf{x}$$

Inverse Problems in Imaging

James Nagy

Singular values of \mathbf{B}_k converge to large singular values of \mathbf{A} . Thus, for early iterations k: $\mathbf{x} = \mathbf{B}_k \setminus \mathbf{W}_k \mathbf{b}$

$$\mathbf{x}_k = \mathbf{Z}_k \mathbf{x}$$

$$\mathbf{x}_k = \mathbf{Z}_k \mathbf{x}$$

Inverse Problems in Imaging

Singular values of \mathbf{B}_k converge to large singular values of \mathbf{A} . Thus, for early iterations k: $\mathbf{x} = \mathbf{B}_k \setminus \mathbf{W}_k \mathbf{b}$

$$\mathbf{x}_k = \mathbf{Z}_k \mathbf{x}$$

$$\mathbf{x}_k = \mathbf{Z}_k \mathbf{x}$$

Inverse Problems in Imaging

James Nagy

Golub-Kahan Based Hybrid Methods

To avoid noisy reconstructions, embed regularization in LBD:

- O'Leary and Simmons, SISSC, 1981.
- Björck, BIT 1988.
- Björck, Grimme, and Van Dooren, BIT, 1994.
- Larsen, PhD Thesis, 1998.
- Hanke, BIT 2001.
- Kilmer and O'Leary, SIMAX, 2001.
- Kilmer, Hansen, Español, SISC 2007.
- Chung, N, O'Leary, ETNA 2007 (IRhybrid_lsqr Implementation)

Note: There is also a lot of work on Arnoldi-Tikhonov hybrid methods; see work by Reichel (and collaborators), and Gazzola and Novati.

Regularize the Projected Least Squares Problem

To stabilize convergence, regularize the projected problem:

$$\min_{\mathbf{x}} \left\| \begin{bmatrix} \beta \mathbf{e}_1 \\ \mathbf{0} \end{bmatrix} - \begin{bmatrix} \mathbf{B}_k \\ \lambda \mathbf{I} \end{bmatrix} \mathbf{x} \right\|_2^2$$

Note: \mathbf{B}_k is very small compared to \mathbf{A} , so

- Can use "expensive" methods to choose λ (e.g., GCV)
- Can also use GCV information to estimate stopping iteration (Björck, Grimme, and Van Dooren, BIT, 1994).

Example: Inverse Heat Equation

$$\mathbf{x}_k = \mathbf{Z}_k \mathbf{x}$$

 $\frac{\text{HyBR (Tikhonov regularization)}}{\mathbf{x} = \begin{bmatrix} \mathbf{B}_k \\ \lambda_k \mathbf{I} \end{bmatrix} \setminus \begin{bmatrix} \mathbf{W}_k \mathbf{b} \\ \mathbf{0} \end{bmatrix}}$ $\mathbf{x}_k = \mathbf{Z}_k \mathbf{x}$

Example: Inverse Heat Equation

$$\mathbf{x}_k = \mathbf{Z}_k \mathbf{x}$$

 $\frac{\text{HyBR (Tikhonov regularization)}}{\mathbf{x} = \begin{bmatrix} \mathbf{B}_k \\ \lambda_k \mathbf{I} \end{bmatrix} \setminus \begin{bmatrix} \mathbf{W}_k \mathbf{b} \\ \mathbf{0} \end{bmatrix}}$ $\mathbf{x}_k = \mathbf{Z}_k \mathbf{x}$

Example: Inverse Heat Equation

 $\mathbf{x} = \mathbf{B}_k \setminus \mathbf{W}_k \mathbf{b}$

$$\mathbf{x}_k = \mathbf{Z}_k \mathbf{x}$$

 $\frac{\text{HyBR (Tikhonov regularization)}}{\mathbf{x} = \begin{bmatrix} \mathbf{B}_k \\ \lambda_k \mathbf{I} \end{bmatrix} \setminus \begin{bmatrix} \mathbf{W}_k \mathbf{b} \\ \mathbf{0} \end{bmatrix}} \mathbf{x}_k = \mathbf{Z}_k \mathbf{x}$

Example: Inverse Heat Equation

$$\mathbf{x} = \mathbf{B}_k \setminus \mathbf{W}_k \mathbf{b}$$

$$\mathbf{x}_k = \mathbf{Z}_k \mathbf{x}$$

 $\frac{\text{HyBR (Tikhonov regularization)}}{\mathbf{x} = \begin{bmatrix} \mathbf{B}_k \\ \lambda_k \mathbf{I} \end{bmatrix} \setminus \begin{bmatrix} \mathbf{W}_k \mathbf{b} \\ \mathbf{0} \end{bmatrix}}$ $\mathbf{x}_k = \mathbf{Z}_k \mathbf{x}$

Regularize the Projected Least Squares Problem

To stabilize convergence, regularize the projected problem:

$$\min_{\mathbf{x}} \left\| \begin{bmatrix} \beta \mathbf{e}_1 \\ \mathbf{0} \end{bmatrix} - \begin{bmatrix} \mathbf{B}_k \\ \lambda \mathbf{I} \end{bmatrix} \mathbf{x} \right\|_2^2$$

Problems choosing regularization parameters:

- Very little regularization is needed in early iterations.
- GCV tends to choose too large λ for bidiagonal system. Our remedy: Use a weighted GCV (Chung, N, O'Leary, 2007)
- Can also use WGCV information to estimate stopping iteration (approach similar to Björck, Grimme, and Van Dooren, BIT, 1994).

Weighted GCV

If GCV tends to over or under smooth for class of problems, use:

$$GCV(\lambda) = \frac{n||(I - AA_{\lambda}^{\dagger})\mathbf{b}||^{2}}{\left[\operatorname{trace}(I - \omega AA_{\lambda}^{\dagger})\right]^{2}}$$

•
$$\omega = 1 \Rightarrow$$
 standard GCV

• $\omega > 1 \Rightarrow$ smoother solutions

• $\omega < 1 \Rightarrow$ less smooth solutions

Weighted GCV used in:

```
Friedman, Silverman (Technometrics, 1989)
Nychka, et al. (FUNFITS statistical toolbox, 1998)
Cummins, Filloon, Nychka (J. Am. Stat. Assoc., 2001)
Kim, Gu (Royal Stat. Soc. B, 2004)
```

Interpretations of Modified GCV

• Weighted "leave-one-out" prediction method.

• trace
$$\left(I - \omega A A_{\lambda}^{\dagger}\right) = \sum_{i=1}^{n} (1 - \phi_i) + (1 - \omega) \sum_{i=1}^{n} \phi_i$$
,
where $\phi_i = \frac{\sigma_i^2}{\sigma_i^2 + \lambda^2}$ (Tikhonov SVD filter factors)

• If $\omega > 1$, modified GCV function has poles when $\sum_{i=1}^{n} \phi_i = \frac{n}{\omega}$

How to choose ω ?

- GCV chooses too large λ_k at each iteration.
- If we know $\lambda_{k,opt}$, find ω by solving

$$\left. \frac{\partial}{\partial \lambda} \left[G(\omega, \lambda) \right] \right|_{\lambda = \lambda_{k,opt}} = 0$$

• At early iterations, we need little or no regularization, so

$$0 \leq \lambda_{k,opt} \leq \sigma_{min} \left(\mathbf{B}_k \right)$$

- Adaptive approach:
 - Find $\hat{\omega}_k$ corresponding to $\lambda_{k,opt} = \sigma_{min} (\mathbf{B}_k)$
 - Use $\omega_k = \text{mean}\{\hat{\omega}_1, \hat{\omega}_2, \dots, \hat{\omega}_k\}$

Examples: Regularization Tools, phillips

Examples: Regularization Tools, shaw

Examples: Regularization Tools, deriv2

Examples: Regularization Tools, baart

Examples: Regularization Tools, heat

- Recall our previous example with the tomography test problem.
- We used IRcgls, which didn't enforce any regularization, and wasn't able to determine a good stopping iteration without any additional information.
- Now try a hybrid method, which will use Tikhonov regularization, and GCV to stop iterations, as described on the previous slides:

```
[x, IterInfo] = IRhybrid_lsqr(A, b);
PRshowx(x, ProbInfo)
```

Exercise: See if you can reconstruct problems created by someone else:

- Go to https://www.fips.fi/dataset.php
- Scroll to nearly bottom of page, and grab mat files:

DataFull_128x15.mat

 $DataFull_128x45.mat$

DataFull_128x180.mat

• Load one of the data sets, say:

load DataFull_128x15.mat

• For convenience manually set ProbInfo structure:

ProbInfo.problemType = 'tomography';

ProbInfo.xType = 'image2D';

ProbInfo.xType = 'image2D';

ProbInfo.xSize = [128, 128];

ProbInfo.bSize = size(m);

• Reshape sinogram data m as a vector b:

b = m(:);

• Solve using some of the IRxxxx methods. For example,

```
[x, IterInfo] = IRhybrid_lsqr(A, b);
```

• Display using PRshowx:

PRshowx(x, ProbInfo)