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Part 1: The SVD and Krylov subspace methods

Outline of Part 1:

• Inverse and ill-posed problems

• Solution of small to moderately sized problems:

Direct methods based on the SVD.

• Solution of large scale problems: Iterative methods



Inverse problems

Inverse problems arise when one seeks to determine the

cause of an observed effect.

• Inverse heat conduction problems: What was the

temperature of a rod an hour ago?

• Computerized tomography.

• Image restoration: Determine the unavailable exact

image from an available contaminated version.

Inverse problems often are ill-posed.



Ill-posed problems

A problem is said to be ill-posed if it has at least one of

the properties:

• The problem does not have a solution,

• The problem does not have a unique solution,

• The solution does not depend continuously on the

data.



Example of an ill-posed problem:

Fredholm integral equation of the first kind,

∫ 1

0
k(s, t)x(t)dt = f(t), 0 ≤ s ≤ 1,

with a continuous kernel k.

By the Riemann–Lebesgue lemma, small perturbations in

f may correspond to large perturbations in x:

max
0≤s≤1

∣∣∣∣
∫ 1

0
k(s, t) cos(2πℓt)dt

∣∣∣∣

can be made “tiny” by choosing |ℓ| large.



Linear discrete ill-posed problems

Let A ∈ Rm×n and b ∈ Rm with m ≥ n. When m > n,

consider the least-squares problems

min
x∈Rn

‖Ax− b‖2

or, when m = n, consider the linear system of equations

Ax = b.

Matrices that arise in inverse problems, such as problems

of remote sensing or image restoration problems, are of

ill-determined rank, possibly rank deficient.



Least-squares problems or linear systems of equations

with a matrix of this kind are referred to as linear

discrete ill-posed problems.

The vector b contains available data and is not required

to be in R(A).



Linear discrete ill-posed problems arise from the

discretization of linear ill-posed problems, such as

Fredholm integral equations of the 1st kind or, in discrete

form, such as in image restoration.

The vector b in linear discrete ill-posed problems that

arise in applications is generally determined by

measurement and therefore is contaiminated by error

(noise).

In image restoration problems b represents an observed

image.



Example 1: Consider the Fredholm integral equation of

the 1st kind
∫ π

0
exp(−st)x(t)dt = 2

sinh(s)

s
, 0 ≤ s ≤

π

2
.

Determine solution x(t) = sin(t).

Discretize integral by Galerkin method using piecewise

constant functions. Code baart from Regularization

Tools by Hansen.



The code baart gives

• the matrix A ∈ R200×200, which is numerically

singular,

• the desired solution xexact ∈ R200, and

• the error-free right-hand side bexact ∈ R200.

Then

Axexact = bexact.



Assume that bexact is not available. Instead a

noise-contaminated vector

b = bexact + e

is known. Here e represents white Gaussian noise scaled

to correspond to 0.1% relative noise, i.e.,

‖e‖2 = 10−3‖bexact‖2

We would like to determine an approximation of xexact by

solving

Ax = b.
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The singular value decomposition

The SVD of A ∈ Rm×n, m ≥ n:

A = UΣV T ,

U = [u1, u2, . . . , um] ∈ Rm×m orthogonal,

V = [v1, v2, . . . , vn] ∈ Rn×n orthogonal,

Σ = diag[σ1, σ2, . . . , σn] ∈ Rm×n,

with

σ1 ≥ σ2 ≥ . . . ≥ σn ≥ 0.



Application to least-squares approximation

min
x

‖Ax−b‖22 = min
x

‖UΣV Tx−b‖22 = min
x

‖ΣV Tx−UT b‖22.

Let

y = [y1, y2, . . . , yn]
T = V Tx,

b′ = [b′1, b
′
2, . . . , b

′
m]

T = UT b.

Then

min
x

‖Ax−b‖22 = min
y

‖Σy−b′‖22 =
n∑

j=1

(σjyj−b′j)
2+

m∑

j=n+1

(b′j)
2.



If A is of full rank, then all σj > 0 and

yj =
b′j
σj

, 1 ≤ j ≤ n,

yields the solution

x = V y.

If some σj = 0, then yj is undetermined and the

least-squares solution not unique.

Often one is interested in the least-squares solution of

minimal norm. Then undetermined elements yj are set to

zero.



Assume that

σ1 ≥ σ2 . . . ≥ σℓ > σℓ+1 = . . . = σn = 0.

Then A is of rank ℓ. Introduce the diagonal matrix

Σ† = diag[1/σ1, 1/σ2, . . . , 1/σℓ, 0, . . . , 0] ∈ Rn×m.

The matrix

A† = V Σ†UT ∈ Rn×m

is known as the Moore–Penrose pseudoinverse of A.



The solution of the least-squares problem

min
x

‖Ax− b‖2

of minimal Eucliden norm can be expressed as

x = A†b.

Moreover,

A†A = I ∈ Rn×n, AA† = PR(A) ∈ Rm×m.



Note that

A = UΣV T =
ℓ∑

j=1

σjujv
T
j .

Define

Ak :=
k∑

j=1

σjujv
T
j , 1 ≤ k ≤ ℓ.

Then Ak is of rank k; Ak is the sum of k rank-one

matrices σjujv
T
j .

Moreover,

‖A− Ak‖2 = min
rank(B)≤k

‖A− B‖2 = σk+1,

i.e., Ak is the closest matrix of rank ≤ k to A. Here ‖ · ‖2
denotes the spectral norm.



Let b = bexact + e, where e denotes an error. Then

x := A†b =
ℓ∑

j=1

uT
j b

σj

vj

=
ℓ∑

j=1

uT
j bexact

σj

vj +
ℓ∑

j=1

uT
j e

σj

vj

= xexact +
ℓ∑

j=1

uT
j e

σj

vj.

If σℓ > 0 tiny, then
uT
ℓ e

σℓ

might be huge and x a meaningless approximation of

xexact.



Recall that

Ak =
k∑

j=1

σjujv
T
j

is the best rank-k approximation of A.

Pseudoinverse of Ak:

A†
k :=

k∑

j=1

σ−1
j vju

T
j , σk > 0.



Approximate xexact by

xk := A†
kb

=
k∑

j=1

uT
j b

σj

vj

=
k∑

j=1

uT
j bexact

σj

vj +
k∑

j=1

uT
j e

σj

vj.

for some k ≤ ℓ.

Approximating xexact by xk is known at the truncated

SVD (TSVD) method. How to choose k?



Example 1 cont’d: Singular values of A
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Example 1 cont’d: Right-hand side without noise
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Example 1 cont’d: Right-hand side without noise
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Example 1 cont’d: Right-hand side without noise: Exact and

computed solutions
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Example 1 cont’d: Right-hand side with relative noise 10−3
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Example 1 cont’d: Right-hand side with relative noise 10−3
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The discrepancy principle prescribes that the truncation

index k be as large as possible so that, for some fixed η > 1,

‖Axk − b‖2 ≤ η‖b− bexact‖2.

Here k = 3.



Example 1 cont’d: Right-hand side with relative noise 10−3:

Exact and computed solutions
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There are many ways to determine the truncation index

k including:

• The discrepancy principle: Gives improved

approximation of xexact as ‖b− bexact‖2 ց 0. Requires

a bound for ‖b− bexact‖2 and that bexact ∈ R(A).

• The L-curve criterion: A method that often gives a

suitable value of k when ‖b− bexact‖2 is not too small.

• Cross validation and generalized cross validation:

Statistically based methods.



• The quasi-optimality criterion: Is based on

comparing consecutive norms

‖xj+1 − xj‖2, j = 1, 2, . . . .

All methods, except for the discrepancy principle are

referred to as “heuristic methods.” They work well for

certain problems, but may fail to determine a suitable

truncation index for others.



Example 1 cont’d: The L-curve for right-hand side with

relative noise 10−3
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Krylov subspace iterative methods:
Regularization by truncated iteration

The most popular iterative method is the conjugate

gradient (CG) method applied to the normal equations

ATAx = AT b.

The most stable implementation is based on

Golub–Kahan bidiagonalization applied to A. This is the

basis for the LSQR algorithm by Paige and Saunders.



Let A ∈ Rm×n. Application of k bidiagonalization steps

to A with initial vector b gives the decompositions

AVk = Uk+1Bk+1,k, ATUk = VkB
T
k,k,

where the matrices

Uk+1 = [Uk, uk+1] = [u1, u2, . . . , uk+1] ∈ Rm×(k+1),

Vk = [v1, v2, . . . , vk] ∈ Rn×k,

have orthonormal columns with

R(Uk+1) = Kk+1(AAT , b) = span{b, (AAT )b, . . . , (AAT )kb},

R(Vk) = Kk(A
TA,AT b) = span{AT b, (ATA)AT b, . . . , (ATA)k−1AT b}.



Moreover,

Bk+1,k =




β1,1

β2,1 β2,2
. . .

. . .

βk,k−1 βk,k

βk+1,k




∈ R(k+1)×k

is lower bidiagonal, and Bk,k is the leading k × k

submatrix of Bk+1,k.

We assume that k is small enough so that the Golub–Kahan

decomposition with the stated properties exists. Otherwise,

breakdown occurs. This usually is beneficial.



The Golub–Kahan bidiagonalization algorithm.

1: Input: Matrix A ∈ Rm×n, initial vector b ∈ Rm,

number of steps k.

2: v0 = 0, β1,0 = ‖b‖2, u1 = b/β1,0

3: for j = 1 to k

4: ṽ = ATuj − βj,j−1vj−1, βj,j = ‖ṽ‖2, vj = ṽ/βj,j

5: ũ = Avj − βj,juj , βj+1,j = ‖ũ‖2, uj+1 = ũ/βj+1,j

6: end for

7: Output: Golub–Kahan decompositions.

Main computational cost: k matrix-vector product

evaluations with A and with AT .



Application of Golub–Kahan bidiagonalization

min
x∈Kk(ATA,AT b)

‖Ax− b‖2 = min
y∈Rk

‖AVky − b‖2

= min
y∈Rk

‖Uk+1(Bk+1,ky − e1‖b‖2)‖2

= min
y∈Rk

‖Bk+1,ky − e1‖b‖2‖2.

This shows that the iterative method is a minimal

residual method.

The small least-squares problem on the right-hand side is

solved for yk by QR factorization of Bk+1,k. Then

xk = Vkyk ∈ Kk(A
TA,AT b).

We would like that xk ≈ xexact. How to choose k?



Implementation issues

Consider the QR factorization:

Bk+1,k = Qk+1Rk+1,k.

Here Qk+1 ∈ R(k+1)×(k+1) is orthogonal and

Rk+1,k ∈ R(k+1)×k is upper triangular and banded, with

only 2 nonvanishing bands above the diagonal. The last

row of Rk+1,k vanishes.

The factorization can be computed in only O(k) flops

with the aid of Givens rotations.



LSQR computes the solution xk ∈ Kk(A
TA,AT b) of the

least-squares problem without storing the the whole

matrices Vk and Uk+1; only a few of the most recently

generated columns are stored simultaneously.

Since Kk−1(A
TA,AT b) ⊂ Kk(A

TA,AT b), the residual

errors rk = b− Axk satisfy

‖rk‖2 ≤ ‖rk−1‖2, k = 1, 2, . . . .

Generally, the inequality is strict.



Let

δ = ‖b− bexact‖2

and let η > 1 be independent of δ.

The discrepancy principle prescribes that the first iterate

xk that satisfies

‖Axk − b‖2 ≤ ηδ

be chosen as an approximation of xexact. Denote the

smallest largest k such that xk satisfies the discrepancy

principle by k = k(δ). Then k(δ) increases as δ decreases.



An iterative method is said to be a regularization method

if

lim
δց0

sup
‖b−bexact‖2≤δ

‖xk(δ) − xexact‖2 = 0.

A proof in Hilbert space that the iterative method

described satisfies this condition is provided by Hanke

and Nemirovskii.

Note that

• The above property is easy to show in finite

dimensions for many iterative methods.

• The rate of convergence as δ ց 0 of the computed

iterates xk towards xexact may be slow.



Other iterative methods

Consider linear discrete ill-posed problems

Ax = b

with a symmetric matrix A ∈ Rn×n. Let x0 = 0.

• When A is positive semidefinite, the conjugate gradient

(CG) method can be used. The kth iterate, xk,

determined by CG satisfies xk ∈ Kk(A, b) and

(xk−xexact)
TA(xk−xexact) = min

x∈Kk(A,b)
(x−xexact)

TA(x−xexact).

Generally k ≪ n. This method is not a regularization

method. It gives poor approximations of xexact.



• For symmetric indefinite problems SYMMLQ by

Paige and Saunders can be applied. But SYMMLQ

solves the same minimization problem as CG and

also determines poor approximations of xexact.

• The kth iterate, xk, computed by the minimal

residual (MINRES) method by Paige and Saunders

satisfies xk ∈ Kk(A, b) and

‖Axk − b‖2 = min
x∈Kk(A,b)

‖Ax− b‖2.

Regularization properties that are weaker than for

LSQR can be shown. The error in b propagates

somewhat faster into the iterates than for LSQR.



• The kth iterate, xk, determined by the range

restricted minimal residual (RRMINRES) method

satisfies xk ∈ Kk(A,Ab) and

‖Axk − b‖2 = min
x∈Kk(A,Ab)

‖Ax− b‖2.

This method gives more accurate approximations of

xexact than MINRES. The computed solution is

orthogonal to N (A), because xk ∈ R(A) = N (A)⊥.

Hanke showed it is a regularization method.



The storage requirement of CG, SYMMLQ, MINRES,

and RRMINRES can be bounded independently of the

number of iterations k.

The coding of the progressive form of RRMINRES is

somewhat tricky. It is based on decompositions of the

form



AV̂k = Vk+2Ĥk+2,k,

where

• V̂k ∈ Rn×k has orthonormal columns that span

Kk(A,Ab) = span{Ab,A2b, . . . , Akb}.

• Vk+2 ∈ Rn×(k+2) has orthonormal columns that span

Kk+2(A, b) = span{b, Ab, . . . , Ak+1b} with first

column b/‖b‖2.

• Ĥk+2,k ∈ R(k+2)×k is lower Hessenberg with two

nonvanishing subdiagonals.



The approximate solution determined at step k of

RRMINRES satisfies xk ∈ Kk(A,Ab) and

‖Axk − b‖2 = min
x∈Kk(A,Ab)

‖Ax− b‖2

= min
y∈Rk

‖Vk+2(Ĥk+2,ky − e1‖b‖2)‖2

= min
y∈Rk

‖Ĥk+2,ky − e1‖b‖2‖2.

The least-squares problem in the right-hand side easily

can be solved by QR factorization of Ĥk+2,k. Only a few

of the most recently generated columns of Vk+2 and V̂k

have to be stored simultaneously.



Consider linear discrete ill-posed problems

Ax = b

with a nonsymmetric square matrix A ∈ Rn×n. Let

x0 = 0.

• The kth iterate, xk, determined by the generalized

minimal residual (GMRES) method satisfies

xk ∈ Kk(A, b) and

‖Axk − b‖2 = min
x∈Kk(A,b)

‖Ax− b‖2.

This is a regularization method in the same sense as

MINRES.



• The kth iterate, xk, computed by the range restricted

GMRES (RRGMRES) method satisfies

xk ∈ Kk(A,A
jb) and

‖Axk − b‖2 = min
x∈Kk(A,Ajb)

‖Ax− b‖2.

This is a regularization method under the same

conditions as GMRES.

When A is a low-pass filter, Ab contains less

high-frequency error than b. This results in improved

approximations of xexact. Best results are achieved

for j = 1 or j = 2.



The most common implementation of GMRES is based

on partial Arnoldi decomposition of A. Application of k

steps of the Arnoldi process to A ∈ Rn×n with initial

vector b gives the decomposition

AVk = Vk+1Hk+1,k,

where

Vk+1 = [Vk, vk+1] = [v1, v2, . . . , vk+1] ∈ Rn×(k+1)

has orthonormal columns with Vk+1e1 = b/‖b‖2, and

Hk+1,k ∈ R(k+1)×k is upper Hessenberg.



The kth iterate determined by GMRES satisfies

‖Axk − b‖2 = min
x∈Kk(A,b)

‖Ax− b‖2

= min
y∈Rk

‖AVky − b‖2

= min
y∈Rk

‖Vk+1(Hk+1,ky − e1‖b‖2)‖2

= min
y∈Rk

‖Hk+1,ky − e1‖b‖2‖2.

Solve the small least-squares problem on the right-hand

side by using the QR factorization

Hk+1,k = Qk+1Rk+1,k,

where Qk+1 ∈ R(k+1)×(k+1) is orthogonal and

Rk+1,k ∈ R(k+1)×k is upper triangular with vanishing last

row.



Denote the solution by yk. Then the kth iterate produced

by GMRES is given by

xk = Vkyk.

The matrix Vk has to be available when computing xk.

Therefore, the storage requirment for GMRES grows

linearly with k.

For many discrete ill-posed problems k can be chosen

quite small.



The Arnoldi process

0. Input: Matrix A ∈ Rn×n, vector b ∈ Rn, number of steps k;

1. Let v1 = b/‖b‖2;

2. for j = 1, . . . , k do

2.1. v = Avj ;

2.3. for i = 1, . . . , j do

hi,j = vT vi; v = v − hi,jvi;

2.4. end for

2.5. hj+1,j = ‖v‖2 ;

2.6. vj+1 = v/hj+1,j ;

3. end for



The RRGMRES method can be implemented by using a

range restricted Arnoldi decomposition of A. Application of k

steps of the range restricted Arnoldi process to A ∈ Rn×n

with initial vector b gives the decomposition

AV̂k = Vk+jHk+j,k,

where

• V̂k ∈ Rn×k has orthormnal columns that span

Kk(A,A
jb),

• Vk+j ∈ Rn×(k+j) has orthonormal columns that span

Kk+j(A, b) with the first column b/‖b‖2.

• Hk+j,k ∈ R(k+j)×k is a generalized upper Hessenberg

matrix with j nontrivial diagonal bands below the

diagonal.



- The iterates xk can be computed by using the range

restricted Arnoldi decomposition:

min
x∈Kk(A,Ajb)

‖Ax− b‖2 = min
y∈Rk

‖AV̂ky − b‖2

= min
y∈Rk

‖Hk+j,ky − e1‖b‖2‖2.

The solution yk of the small least-squares problem on the

right-hand side determines xk = V̂kyk.

- When j = 1, the (standard) Arnoldi decomposition and

(standard) GMRES are recovered.

- The storage equirement for RRGMRES grows linearly

with the number of steps, k. It is about twice as large as

for GMRES.



Example. Consider the integral equation

∫ π/2

−π/2
κ(τ, σ)x(σ)dσ = g(τ), −

π

2
≤ τ ≤

π

2
,

where

κ(σ, τ) = (cos(σ)+cos(τ))

(
sin(ξ)

ξ

)2

, ξ = π(sin(σ)+sin(τ)).

Let g(τ) be a smooth function. Discretize by a Nyström

method based on the trapezoidal rule with equidistant

nodes. This gives a nonsymmetric matrix A ∈ R1000×1000

and bexact ∈ R1000. Adding 1% Gaussian noise gives

b ∈ R1000.



Best iterates generated by RRGMRES(j) for

j = 0, 1, . . . , 4, and smallest errors

iterative method error for best iterate

RRGMRES(0) ‖x(0)
6 − x̂‖ = 4.30

RRGMRES(1) ‖x(1)
5 − x̂‖ = 4.01

RRGMRES(2) ‖x(2)
7 − x̂‖ = 2.06

RRGMRES(3) ‖x(3)
7 − x̂‖ = 2.06

RRGMRES(4) ‖x(4)
7 − x̂‖ = 2.05



Hybrid regularization methods

In the iterative methods described above, regularization

is achieved by truncated iteration. This regularization

technique is analogous to the TSVD method and

performs well for many linear discrete ill-posed problems.

However, there are problems for which GMRES-type

methods determine poor approximations of xexact.



Reasons for this include:

• The solution subspace determined by a few steps of

Arnoldi-type methods are poorly suited to

approximate xexact. This includes images that have

been contaminated by significant motion blur.

• The solution subspace determined by a few steps of

Arnoldi-type methods contains an accurate

approximation of xexact, but GMRES-type methods

are unable to determine it.



Both types of difficulties will be illustrated in these

lectures. They can be remedied as follows:

• When the solution subspace is poorly suited to

represent xexact, one often can use a preconditioner

M to remedy this situation, i.e., one solves

AMy = b, x = My,

and determines an approximetion xk in the solution

subspace MKk(AM, b).



• When solution subspace determined by the Arnoldi

process contains an accurate approximation of xexact,

but GMRES fails to compute it, it may be beneficial

regularize by the TSVD method applied to the

Hessenberg matrix generated. This allows that more

Arnoldi steps are carried out than when regularizing

by truncated iteration.


