
Iterative methods for Image Processing

Lothar Reichel

Como, May 2018.

Lecture 2: Tikhonov regularization and truncated

SVD for large-scale problems.

Outline of Lecture 2:

• Small to moderately-sized problems

– Tikhonov regularization in standard form

– Tikhonov regularization in general form

– The generalized SVD

• Large-scale problems

– Tikhonov regularization based on Krylov

subspace methods

– Truncated SVD for large-scale problems

Tikhonov regularization

Solve the minimization problem

min
x

{‖Ax− b‖22 + µ‖Lx‖22},

where µ > 0 is a regularization parameter (to be

determined) and L ∈ Rp×n is a regularization matrix

chosen so that

N (A) ∩ N (L) = {0}.

Then the minimization problem has a unique solution

for any µ > 0.

Common choices of L: identity, discretizations of

differential operator.

In our applications A is a smoothing operator. Therefore,

the Tikhonov minimization problem generally has a

unique solution when L is a discrete differential operator.

We would like L be such that important features of xexact

are not damped. This is the case when they are in N (L).

The normal equations associated with the Tikhonov

minimization problem

(ATA+ µLTL)x = AT b

have the unique solution

xµ := (ATA+ µLTL)−1AT b

for any µ > 0. Generally,

lim
µց0

xµ = A†b, lim
µ→∞

xµ = 0.

Neither x0 nor x∞ are useful approximations of xexact. A

proper choice of the value of µ is important. It involves

computing xµ repeatedly for different µ-values. May be

expensive.

The discrepancy principle

Assume that a fairly accurate estimate for

δ := ‖b− bexact‖2

is known. The discrepancy principle prescribes that

µ > 0 be chosen so that

‖Axµ − b‖2 = ηδ

for some constant η > 1 independent of δ.

The computation of such a µ-value requires solution of

the Tikhonov minimization problem for several values of

µ.

Methods for repeated Tikhonov minimization

Assume that A ∈ Rm×n is small and let L = I. Compute

the SVD of A,

A = UΣV T ,

where U ∈ Rm×m and V ∈ Rn×n are orthogonal, and

Σ = diag[σ1, σ2, . . . , σn] ∈ Rm×n

with σ1 ≥ σ2 ≥ . . . ≥ σn ≥ 0. The Tikhonov solution is

given by

xµ = V (ΣTΣ + µI)−1ΣTUT b.

The evaluation of ‖Axµ − b‖2 requires only O(m) flops

for every µ-value (without forming Axµ).

The Generalized SVD (GSVD)

Assume that A ∈ Rm×n and L ∈ Rp×n are small. (Here

L 6= I). The GSVD of the matrix pair {A,L} are the

factorizations

A = UΣXT , L = VMXT ,

where U ∈ Rm×m and V ∈ Rp×p are orthogonal,

X ∈ Rn×n is nonsingular, and Σ and M are diagonal.

When m ≥ n ≥ p,

Σ = diag[σ1, σ2, . . . , σp, 1, 1, . . . , 1] ∈ Rm×n,

M = [diag[µ1, µ2, . . . , µp], 0, 0, . . . , 0] ∈ Rp×n,

0 ≤ σ1 ≤ σ2 ≤ . . . ≤ σp ≤ 1,

1 ≥ µ1 ≥ µ2 ≥ . . . ≥ µp ≥ 0,

σ2
j + µ2

j = 1, 1 ≤ j ≤ p.

The Tikhonov solution is given by

xµ = X−T (ΣTΣ + µMTM)−1ΣTUT b.

The evaluation of ‖Axµ − b‖2 requires only O(m) flops

for every µ-value (without evaluating Axµ).

When the matrices A and L are large, the computation

of the SVD of A or GSVD of the matrix pair {A,L} is

expensive.

When A,L ∈ Rn×n then, roughly,

• the computation of the SVD of A requires about

10n3 flops, and

• the computation of the GSVD of {A,L} requires

about 25n3 flops.

Therefore, the evaluation of these decompositions is

impractical for large-scale problems.

Methods for large-scale problems

Zha described an iterative method for determining a few

vectors of the GSVD of a pair of large matrices {A,L}.

Kilmer, Hansen, and Español apply this method to

Tikhonov regularization. Some properties:

• It is an inner-outer iterative method. Generalized

singular vectors are computed in the inner iteration.

• Zha’s method may require fairly many iterations.

We are interested in developing methods that require

only few matrix-vector product evaluations with A.

Application of standard Krylov subspace methods

The Arnoldi process:

Application of k steps to A ∈ Rn×n with initial vector b

gives the Arnoldi decomposition

AVk = Vk+1Hk+1,k,

where the orthonormal columns of Vk ∈ Rn×k span the

Krylov subspace

Kk(A, b) = span{b, Ab, A2b, . . . , Ak−1b}

with Vke1 = b/‖b‖2 and Hk+1,k ∈ R(k+1)×k upper

Hessenberg.

We solve

min
x∈Kk(A,b)

{‖Ax− b‖22 + µ‖Lx‖22}

by using the QR factorization

LVk = QkRk,

where Qk ∈ Rn×k has orthonormal columns and

Rk ∈ Rk×k is upper triangular. Let x = Vky. Then

min
y∈Rk

{‖Hk+1,ky − e1‖b‖2‖
2
2 + µ‖Rky‖

2
2}.

This reduced problem can be solved by using the GSVD

of {Hk+1,k, Rk}.

Some remarks:

• The Arnoldi process can be replaced by a range

restricted Arnoldi process that generates an

orthonormal basis for the solution subspace

Kk(A,A
jb) = span{Ajb, Aj+1b, Aj+2b, . . . , Aj+k−1b}.

Typically, j = 1 or j = 2.

• The Arnoldi process can be replaced by some other

Krylov subspace method for reducing A, such as

Golub–Kahan bidiagonalization.

• The solution subspace is independent of L. For some

problems this is a disadvantage.

Reduction methods for matrix pairs {A,L}

Reduction method by Li and Ye:

Generalizes the Arnoldi process to matrix pairs:

AVk = V2kH
(A)
2k,k,

LVk = V2k+1H
(L)
2k+1,k,

where V2k+1 has orthonormal columns with

V2k+1e1 = b/‖b‖. The matrices H
(A)
2k,k and H

(L)
2k+1,k are

upper “super Hessenberg”.

Example: Matrices for k = 4.

H
(A)
8,4 =

* * * *

* * * *

* * *

* * *

* *

* *

*

*

, H
(L)
9,4 =

* * * *

* * * *

* * * *

* * *

* * *

* *

* *

*

*

.

Solution subspace R(Vk) generated by the Li–Ye method

with initial vector b is of the form

Kk(A,L, b) = span{b, Ab, Lb, A2b, LAb,ALb, L2b,

A3b, LA2b, ALAb,A2Lb, LALb,AL2b, L3b, . . . }

The method alternatingly evaluates a matrix-vector

product with A and a matrix-vector product with L.

Generalized Arnoldi process for matrix pairs

{A,L}:

1. Given q1 with ‖q1‖ = 1;

2. N := 1;

3. for j = 1, 2, . . . , k do

4. if j > N then exit;

5. q̂ := Aqj ;

6. for i = 1, 2, . . . N do

7. hA;i,j := qTi q̂; q̂ := q̂ − qihA;i,j ;

8. end for

9. hA;N+1,j := ‖q̂‖;

10. if hA;N+1,j > 0 then

11. N := N + 1; qN := q̂/hA;N,j ;

12. end if

13. q̂ := Lqj ;

14. for i = 1, 2, . . . N do

15. hL;i,j := qTi q̂; q̂ := q̂ − qihL;i,j ;

16. end for

17. hL;N+1,j := ‖q̂‖;

18. If hL;N+1,j > 0 then

19. N := N + 1; qN := q̂/hA;N,j ;

20. end if

21. end for

The scalar N in the algorithm tracks the number of

vectors qi generated so far during the computations. Let

αk and βk denote the values of N at the end of Lines 12

and 20, respectively, when j = k.

AQ(:,1:k) = Q(:,1:αk)HA (1:αk,1:k),

LQ(:,1:k) = Q(:,1:βk)HL (1:βk,1:k);

We solve

min
x∈Kk(A,L,b)

{‖Ax− b‖22 + µ‖Lx‖22}

by using the generalized Arnoldi decompositions. Let

x = Vky. Then we obtain the reduced problem

min
y∈Rk

{‖H(A)
2k,ky − e1‖b‖2‖

2
2 + µ‖H(L)

2k+1,ky‖
2
2}.

It can be solved by the GSVD.

Example: We would like to determine the unavailable

noise-free image represented by 412× 412 pixels.

The entries of the vector b ∈ R4122 store the pixel values,

ordered column-wise, of the available blur- and

noise-contaminated image.

The blurring matrix A ∈ R4122×4122 represents severe

Gaussian blur. The image also has been contaminated by

30% Gaussian noise. We apply the Li–Ye method to solve

min
x∈Kkl(A,L,b)

{‖Ax− b‖22 + µ‖Lx‖22}

for two different regularization matrices L:

• L = ∆, the standard discrete Laplace operator based

on the five-point stencil.

• L is a discretized and linearized Perona–Malik

operator:

L(x) = div(g(|∇x|2)∇x), g(s) =
1

1 + s
ρ

, ρ = 10−4.

Restored image using L = ∆. 6 generalized Arnoldi steps.

Restored image with L determined by the Perona–Malik

operator. Two step of GMRES give an approximate

restoration with which L is defined.

Edge map for restoration with Perona–Malik operator.

Some remarks:

• To work well with the discrepancy principle, e1

should be replaced by P
R(H

(A)
2ℓ,ℓ)

e1, i.e.,

‖Axµ − b‖2 = ‖H(A)
2k,kyµ − e1‖b‖2‖2

≥ ‖H(A)
2k,kyµ − P

R(H
(A)
2k,k)

e1‖b‖2‖2.

The discrepancy principle is applied to the

right-hand side.

• The method requires the generation of about twice as

many orthonormal vectors as the dimension of the

solution subspace.

Reduction method based on the flexible Arnoldi process:

Let A ∈ Rn×n. Apply k steps of the flexible Arnoldi

process (due to Saad) to A with initial vector b. This

gives a decomposition

AVk = Uk+1Hk+1,k,

where Uk+1 has orthonormal columns with

Uk+1e1 = b/‖b‖.

Columns of Vk arbitrary. We use the QR factorization

LVk = QkRk.

The flexible Arnoldi algorithm

0. Input A ∈ Rn×n, {vj}
k
j=1 ⊂ Rn, b ∈ Rn;

1. Let u1 = b/‖b‖2;

2. for j = 1, . . . , k do

2.1. w = Avj ;

2.3. for i = 1, . . . , j do

hi,j = wTui; w = w − hi,jui;

2.4. end for

2.5. hj+1,j = ‖w‖2 ;

2.6. uj+1 = w/hj+1,j ;

3. end for

Then

min
x∈R(Vk)

{‖Ax− b‖22 + µ‖Lx‖22}

simplifies to the small problem

min
y∈Rk

{‖Hk+1,ky − e1‖b‖2‖
2
2 + µ‖Rky‖

2
2}

which we can solve with the GSVD.

We determine the column vj+1 of Vℓ by evaluating

w = Avj or w = Lvj

and then orthogonalizing w against the columns of Vj.

Example: Alternate between w = Avj and w = Lvj.

Then

R(Vk) = span{b, Ab, Lb, A2b, LAb,ALb, L2b, A3b, . . . }.

If the use of 4 vectors w = Lvj is followed by one vector

w = Lvj in a cyclic fashion, then

R(Vk) = span{b, Lb, L2b, L3b, L4b, Ab, L5b, . . . }.

The latter space often gives better results than the

former when L is a difference operator.

Example: Consider the inverse Laplace transform
∫ ∞

0

exp(−st)x(t)dt =
1

s+ 1/2
, 0 ≤ s < ∞,

whose solution is x(t) = exp(−t/2). Discretize by

MATLAB function i laplace from Regularization Tools.

Gives A ∈ R500×500 and discretized scaled solution

x̂ ∈ R500. The data vector b has 0.1% Gaussian noise.

The regularization matrix is tridiagonal and zero padded:

L =

0 0 . . . 0

−1 2 −1

−1 2 −1
.

−1 2 −1

0 . . . 0 0

∈ R500×500.

Use w = Avj every 50th step. Figure shows computed

solution xµ after 92 steps (red solid curve), GSVD

solution (blue dashed curve), and desired solution x̂ (blue

dash-dotted curve).

0 100 200 300 400 500
−0.5

0

0.5

1

1.5

Some remarks:

• The method allows much flexibility in the choice of

solution subspace.

• The method requires A and L to be square.

• The flexible Arnoldi process can be applied without

Tikhonov regularization.

The flexible Arnoldi process and truncated iteration:

Flexible Arnoldi gives sequence of decompositions

AVk = Uk+1Hk+1,k, k = 1, 2, 3, . . . ,

where Uk+1 has orthonormal columns, Uk+1e1 = b/‖b‖.

We let Vk have orthonormal columns. Then

min
x∈R(Vk)

‖Ax− b‖2 = min
y∈Rk

‖Hk+1,ky − e1‖b‖2‖2.

Denote solution by yk. Terminate the iterations as soon

as

‖Hk+1,kyk − e1‖b‖2‖2 ≤ δ. (discrepancy principle)

Gives similar results as flexible Arnoldi with Tikhonov

regularization for L = I.

A simple extension of the flexible Arnoldi-based method:

We determine the last column vj+1 of Vj+1 by evaluating

w = Avj or w = L∗Lvj

and then orthogonalizing w against the columns of Vj.

This allows L to be rectangular.

Example: We would like to determine the unavailable

noise-free image represented by 256× 256 pixels.

The entries of the vector b ∈ R2562 store the pixel values,

ordered column-wise, of the available image contaminted

by Gaussian blur and 1% Gaussian noise.

The regularization matrix is given by

L =

 I ⊗ L1

L1 ⊗ I

 , L1 =

1

2

1 −1

1 −1
.

1 −1

with I ∈ R256×256, L1 ∈ R255×256, and L ∈ R130560×65536.

Restored image after 22 steps with one vector w = Avj

for every 10 vectors w = L∗Lvj for constructing the

solution subspace.

Some remarks:

• The method allows a lot of flexibility in the choice of

solution subspace and regularization matrix.

• The method requires A to be square.

A generalized Golub–Kahan-type reduction method for

matrix pairs.

Matrix-vector products are evaluated with the matrices

A, L, AT , and LT in a periodic fashion. With initial

vector b, we have after k steps

AVk = Uk+1Hk+1,k, LVk = WkKk,k,

ATUk = V2k−2H
T
k,2k−2, LTWk = V2k+1K

T
k,2k+1,

where Uk+1, V2k+1, and Wk have orthonormal columns

with Uk+1e1 = b/‖b‖.

The matrix H has the structure

H =

×

× ×

× × ×

× × × ×

× × × × ×

and

the structure of K is given by

K =

× × ×

× × × ×

× × × × ×

× × × × × ×

.

The algorithm has short recurrence relations with the

number of terms increasing with the number of steps k.

The solution subspace is of the form

R(Vk) = span{A∗b, (A∗A)A∗b, (B∗B)A∗b,

(A∗A)2A∗b, (B∗B)(A∗A)A∗b,

(A∗A)(B∗B)(A∗A)A∗b, (B∗B)2A∗b, . . . }.

Example: We would like to determine the unavailable

noise-free image represented by 384× 384 pixels.

The entries of the vector b ∈ R3842 store the pixel values,

ordered column-wise, of the available image contaminted

by Gaussian blur and 10% Gaussian noise.

Restored image after 7 steps and regularization matrix

determined by a discretization and linearization of the

Perona–Malik operator, similarly as above.

Observations:

• A variety of iterative methods can be derived for the

solution of discrete ill-posed problems with pairs of

large matrices. Extensions to matrix n-tuplets is

straightforward. They are of interest for

multiparameter Tikhonov regularization.

• Iterative methods may determine approximate

solutions of higher quality than direct solution

methods.

The Singular value decomposition applied to

large-scale ill-posed problems

Let A ∈ Rn×n, b ∈ R\{0}. The symmetric Lanczos

process applied to A with initial vector b gives the

Lanczos decomposition

AVk = Vk+1Tk+1,k,

where the matrix

Vk+1 = [Vk, vk+1] = [v1, v2, . . . , vk+1] ∈ Rn×(k+1)

has orthonormal columns such that

R(Vk+1) = Kk+1(A, b) = span{b, Ab, . . . , Akb}.

Moreover, the matrix

Tk+1,k =

α1 β2

β2 α2 β3
. . .

. . .
. . .

βk−1 αk−1 βk

βk αk

βk+1

∈ R(k+1)×k

is tridiagonal, and Tk,k is the leading k × k symmetric

submatrix.

The Lanczos decomposition can be computed by the

symmetric Lanczos algorithm.

The symmetric Lanczos algorithm.

1: Input: Symmetric matrix A ∈ Rn×n, initial

vector b ∈ Rm, number of steps k.

2: v0 = 0, β1 = ‖b‖2, v1 = b/β1

3: for j = 1 to k

4: ṽ = Avj − βjvj−1

5: αj = vTj ṽ

6: ṽ = ṽ − αjvj

7: βj+1 = ‖ṽ‖2

8: vj+1 = ṽ/βj+1

9: end for

10: Output: Lanczos decompositions.

Let A stem from the discretization of an ill-posed

problem and assume that b is contaminated by error.

Instead of solving the least-squares problem

min
x∈Rn

‖Ax− b‖2,

we compute an approximate solution of the reduced

problem

min
x∈Kk(A,b)

‖Ax− b‖2 = min
y∈Rk

‖AVky − b‖2

= min
y∈Rk

‖Vk+1Tk+1,ky − Vk+1e1‖b‖2‖2

= min
y∈Rk

‖Tk+1,ky − e1‖b‖2‖2.

Define the spectral factorization

A = WΛW T ,

where W ∈ Rn×n is orthogonal and

Λ = diag[λ1, . . . , λn] ∈ Rn×n

with

|λ1| ≥ |λ2| ≥ . . . ≥ |λn| ≥ 0.

Theorem 1: Let A be symmetric positive semidefinite.

Assume that the Lanczos process applied to A does not

break down, i.e., that n steps can be carried out. Define

βn+1 = 0. Then

k+1∏

j=2

βj ≤
k∏

j=1

λj, k = 1, 2, . . . , n.

Proof: Define the monic polynomial pk(t) =
∏k

j=1(t− λj)

defined by the k largest eigenvalues of A. Then

‖pk(A)‖2 = ‖pk(Λ)‖2 = max
k+1≤j≤n

|pk(λj)| ≤ |pk(0)| =
k∏

j=1

λj.

Therefore,

‖pk(A)b‖2 ≤ ‖b‖2

k∏

j=1

λj.

Application of n steps of the Lanczos process gives

AVn = VnTn, Vn ∈ Rn×n orthogonal

Hence,

pk(A)b = V̂npk(Tn)V̂
T
n b = V̂npk(Tn)e1‖b‖

and

‖pk(A)b‖2 = ‖pk(Tn)e1‖2‖b‖2 ≥ ‖b‖2

k+1∏

j=2

βj.

The last inequality follows by direct computations. ✷

Corollary 1. Let A ∈ Rn×n be symmetric positive

semidefinite. Assume that the eigenvalues of A “cluster”

at the origin and that the Lanczos method applied to A

does not break down. Further, assume that there is a

constant M independent of j such that

βj+1 ≤ M min{β1, β2, . . . , βj}, j = 1, 2,

Then both the subdiagonal and diagonal entries of Tℓ+1,ℓ

decrease to zero as the row number increases (and is

large enough).

Proof. The decrease of the subdiagonal entries of Tℓ+1,ℓ

follows from Theorem 1. The matrix Tn is similar to A.

Therefore its eigenvalues cluster at zero. Since the

off-diagonal of Tn entries are tiny, the eigenvalues are

close to the diagonal entries. They therefore also have to

be tiny. ✷

Corollary 2: Let A be symmetric. Assume that the

Lanczos process applied to A does not break down, i.e.,

that n steps can be carried out. Define βn+1 = 0. Then

k+1∏

j=2

βj ≤
k∏

j=1

(2|λj|), k = 1, 2, . . . , n.

The requirement that n steps of the Lanczos process can

be removed by bounding k < n.

Corollary 3: Under the conditions of Corollary 2, the

span of the Lanczos vector vk is an accurate

approximations the span of kth eigenvector for large k.

Proof: This follows from the fact that βj ց 0 as j

increases. ✷

Consequences:

• It may not be necessary to compute the EVD of a

large matrix - just use a few steps of Lanczos

tridiagonalization. It is cheaper.

• If it is convenient to use the EVD of a large matrix A

instead of a partial Lanczos tridiagonalization, then

its computation requires only very few steps with a

restarted Lanczos tridiagonalization method. This

follows from the fact that the span of Lanczos vectors

with large index is close to the span of corresponding

eigenvectors.

Non-symmetric problems

k ≪ n steps of Golub-Kahan bidiagonalization (GKB)

applied to A ∈ Rm×n with initial vector û1 = b/‖b‖ gives

the decompositions

AV̂k = Ûk+1Bk+1,k, AT Ûk = V̂kB
T
k,k,

where

Ûk+1 = [Ûk, ûk+1] = [û1, û2, . . . , ûk+1] ∈ Rm×(k+1),

V̂k ∈ Rn×k, ÛT
k+1Ûk+1 = I, V̂ T

k V̂k = I,

R(V̂k) = Kk(A
TA,AT b) = span{AT b, . . . , (ATA)k−1AT b}.

Moreover,

Bk+1,k =

α1

β2 α2

.

βk αk

βℓ+1

∈ R(k+1)×k

is lower bidiagonal with leading k × k submatrix Bk,k.

Instead of solving the original least-squares problem, we

solve the reduced problem

min
x∈Kk(ATA,AT b)

‖Ax− b‖2 = min
y∈Rk

‖AV̂ky − b‖2

= min
y∈Rk

‖Bk+1,ky − e1‖b‖2‖2 −→ yk.

The solution xGKB
k := V̂kyk is cheaper to compute than

xTSVD
k .

Theorem 2: Let A ∈ Rm×n, m ≥ n, have the singular

values σ1 ≥ σ2 ≥ . . . ≥ σn ≥ 0. Assume that the GKB

applied to A with initial vector u1 = b/‖b‖2 does not

break down. Let

Ck+1,k =

α1

β2 α2

.

βk αk

βk+1

.

Then

k+1∏

j=2

αjβj ≤
k∏

j=1

σ2
j , k = 1, 2, . . . , n− 1.

Assume that there is a constant M such that

αj+1βj+1 ≤ M min{α1β1, α2β2, . . . , αjβj}, j = 1, 2,

Then the products αjβj ց 0 as j increases.

Proof: The result can be shown, e.g., by first considering

the application of the symmetric Lanczos method to a

symmetric positive definite matrix. Application of GKB

to A is equivalent to application of the symmetric

Lanczos method to ATA. ✷

Corollary 4: Under the conditions of Theorem 2, the

span of the GKB vector v̂k is an accurate approximations

the span of kth left singular vector for large k.

Proof: This follows from the fact that αjβj ց 0 as j

increases. ✷

Consequences:

• It may not be necessary to compute the SVD of a

large matrix - just use GKB. It is cheaper.

• If it is convenient to use the SVD of a large matrix A

instead of a GKB, then its computation requires only

very few steps with a restarted Lanczos

bidiagonalization method, This follows from the fact

that the span of GKB vectors with large index is

close to the span of corresponding singular vectors.

Example: Test problem Tomo from Regularization Tools

by Hansen. It arises from the discretization of a 2D

tomography problem. Yields a linear system

Ax = b, A ∈ R225×225, x, b ∈ R225.

1% relative error in b.

20 40 60 80 100 120 140 160 180 200 220
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

LSQR
TSVD

Convergence history for GKB and TSVD. GKB solution

error minimal at step ℓ = 66; TSVD solution error

minimal at step ℓ = 216.

solution LSQR − k=66

TSVD − k=66 TSVD − k=216

Exact and computed solutions by GKB (=LSQR) at step

66 and TSVD at steps 66 and 216.

Example: Discretaization of integral equation “baart”

from Regularization Tools by Hansen,
∫ π

0

exp(−st)x(t)dt = 2
sinh(s)

s
, 0 ≤ s ≤

π

2
,

by Galerkin method with box functions as test and trial

functions. Gives matrix A ∈ R500×500.

Apply restarted Lanczos bidiagonalization method to

determine the k largest singular triplets.

Number of desired Size of the largest Number of

singular triplets k bidiagonal matrix matrix-vector products

10 ⌈1.5k⌉ 30

15 ⌈1.5k⌉ 46

20 ⌈1.5k⌉ 60

25 ⌈1.5k⌉ 76

Number of desired Size of the largest Number of

singular triples k bidiagonal matrix matrix-vector products

10 k + 1 22

15 k + 1 32

20 k + 1 42

25 k + 1 52

