Iterative methods for Image Processing

Lothar Reichel

Como, May 2018.

Lecture 2: Tikhonov regularization and truncated SVD for large-scale problems.

Outline of Lecture 2:

- Small to moderately-sized problems
- Tikhonov regularization in standard form
- Tikhonov regularization in general form
- The generalized SVD
- Large-scale problems
- Tikhonov regularization based on Krylov subspace methods
- Truncated SVD for large-scale problems

Tikhonov regularization

Solve the minimization problem

$$
\min _{x}\left\{\|A x-b\|_{2}^{2}+\mu\|L x\|_{2}^{2}\right\}
$$

where $\mu>0$ is a regularization parameter (to be determined) and $L \in \mathbf{R}^{p \times n}$ is a regularization matrix chosen so that

$$
\mathcal{N}(A) \cap \mathcal{N}(L)=\{0\}
$$

Then the minimization problem has a unique solution for any $\mu>0$.

Common choices of L : identity, discretizations of differential operator.

In our applications A is a smoothing operator. Therefore, the Tikhonov minimization problem generally has a unique solution when L is a discrete differential operator.

We would like L be such that important features of $x_{\text {exact }}$ are not damped. This is the case when they are in $\mathcal{N}(L)$.

The normal equations associated with the Tikhonov minimization problem

$$
\left(A^{T} A+\mu L^{T} L\right) x=A^{T} b
$$

have the unique solution

$$
x_{\mu}:=\left(A^{T} A+\mu L^{T} L\right)^{-1} A^{T} b
$$

for any $\mu>0$. Generally,

$$
\lim _{\mu \searrow 0} x_{\mu}=A^{\dagger} b, \quad \lim _{\mu \rightarrow \infty} x_{\mu}=0
$$

Neither x_{0} nor x_{∞} are useful approximations of $x_{\text {exact }}$. A proper choice of the value of μ is important. It involves computing x_{μ} repeatedly for different μ-values. May be expensive.

The discrepancy principle

Assume that a fairly accurate estimate for

$$
\delta:=\left\|b-b_{\text {exact }}\right\|_{2}
$$

is known. The discrepancy principle prescribes that $\mu>0$ be chosen so that

$$
\left\|A x_{\mu}-b\right\|_{2}=\eta \delta
$$

for some constant $\eta>1$ independent of δ.

The computation of such a μ-value requires solution of the Tikhonov minimization problem for several values of μ.

Methods for repeated Tikhonov minimization

Assume that $A \in \mathbf{R}^{m \times n}$ is small and let $L=I$. Compute the SVD of A,

$$
A=U \Sigma V^{T}
$$

where $U \in \mathbf{R}^{m \times m}$ and $V \in \mathbf{R}^{n \times n}$ are orthogonal, and

$$
\Sigma=\operatorname{diag}\left[\sigma_{1}, \sigma_{2}, \ldots, \sigma_{n}\right] \in \mathbf{R}^{m \times n}
$$

with $\sigma_{1} \geq \sigma_{2} \geq \ldots \geq \sigma_{n} \geq 0$. The Tikhonov solution is given by

$$
x_{\mu}=V\left(\Sigma^{T} \Sigma+\mu I\right)^{-1} \Sigma^{T} U^{T} b .
$$

The evaluation of $\left\|A x_{\mu}-b\right\|_{2}$ requires only $\mathcal{O}(m)$ flops for every μ-value (without forming $A x_{\mu}$).

The Generalized SVD (GSVD)

Assume that $A \in \mathbf{R}^{m \times n}$ and $L \in \mathbf{R}^{p \times n}$ are small. (Here $L \neq I)$. The GSVD of the matrix pair $\{A, L\}$ are the factorizations

$$
A=U \Sigma X^{T}, \quad L=V M X^{T}
$$

where $U \in \mathbf{R}^{m \times m}$ and $V \in \mathbf{R}^{p \times p}$ are orthogonal, $X \in \mathbf{R}^{n \times n}$ is nonsingular, and Σ and M are diagonal.

When $m \geq n \geq p$,

$$
\begin{gathered}
\Sigma=\operatorname{diag}\left[\sigma_{1}, \sigma_{2}, \ldots, \sigma_{p}, 1,1, \ldots, 1\right] \in \mathbf{R}^{m \times n}, \\
M= \\
{\left[\operatorname{diag}\left[\mu_{1}, \mu_{2}, \ldots, \mu_{p}\right], 0,0, \ldots, 0\right] \in \mathbf{R}^{p \times n},} \\
\\
0 \leq \sigma_{1} \leq \sigma_{2} \leq \ldots \leq \sigma_{p} \leq 1 \\
1 \geq \mu_{1} \geq \mu_{2} \geq \ldots \geq \mu_{p} \geq 0 \\
\\
\sigma_{j}^{2}+\mu_{j}^{2}=1, \quad 1 \leq j \leq p
\end{gathered}
$$

The Tikhonov solution is given by

$$
x_{\mu}=X^{-T}\left(\Sigma^{T} \Sigma+\mu M^{T} M\right)^{-1} \Sigma^{T} U^{T} b
$$

The evaluation of $\left\|A x_{\mu}-b\right\|_{2}$ requires only $\mathcal{O}(m)$ flops for every μ-value (without evaluating $A x_{\mu}$).

When the matrices A and L are large, the computation of the SVD of A or GSVD of the matrix pair $\{A, L\}$ is expensive.

When $A, L \in \mathbf{R}^{n \times n}$ then, roughly,

- the computation of the SVD of A requires about $10 n^{3}$ flops, and
- the computation of the GSVD of $\{A, L\}$ requires about $25 n^{3}$ flops.

Therefore, the evaluation of these decompositions is impractical for large-scale problems.

Methods for large-scale problems

Zha described an iterative method for determining a few vectors of the GSVD of a pair of large matrices $\{A, L\}$. Kilmer, Hansen, and Español apply this method to Tikhonov regularization. Some properties:

- It is an inner-outer iterative method. Generalized singular vectors are computed in the inner iteration.
- Zha's method may require fairly many iterations.

We are interested in developing methods that require only few matrix-vector product evaluations with A.

Application of standard Krylov subspace methods

The Arnoldi process:
Application of k steps to $A \in \mathbf{R}^{n \times n}$ with initial vector b gives the Arnoldi decomposition

$$
A V_{k}=V_{k+1} H_{k+1, k}
$$

where the orthonormal columns of $V_{k} \in \mathbf{R}^{n \times k}$ span the Krylov subspace

$$
\mathbf{K}_{k}(A, b)=\operatorname{span}\left\{b, A b, A^{2} b, \ldots, A^{k-1} b\right\}
$$

with $V_{k} e_{1}=b /\|b\|_{2}$ and $H_{k+1, k} \in \mathbf{R}^{(k+1) \times k}$ upper
Hessenberg.

We solve

$$
\min _{x \in \mathbf{K}_{k}(A, b)}\left\{\|A x-b\|_{2}^{2}+\mu\|L x\|_{2}^{2}\right\}
$$

by using the QR factorization

$$
L V_{k}=Q_{k} R_{k}
$$

where $Q_{k} \in \mathbf{R}^{n \times k}$ has orthonormal columns and $R_{k} \in \mathbf{R}^{k \times k}$ is upper triangular. Let $x=V_{k} y$. Then

$$
\min _{y \in \mathbf{R}^{k}}\left\{\left\|H_{k+1, k} y-e_{1}\right\| b\left\|_{2}\right\|_{2}^{2}+\mu\left\|R_{k} y\right\|_{2}^{2}\right\} .
$$

This reduced problem can be solved by using the GSVD of $\left\{H_{k+1, k}, R_{k}\right\}$.

Some remarks:

- The Arnoldi process can be replaced by a range restricted Arnoldi process that generates an orthonormal basis for the solution subspace

$$
\mathbf{K}_{k}\left(A, A^{j} b\right)=\operatorname{span}\left\{A^{j} b, A^{j+1} b, A^{j+2} b, \ldots, A^{j+k-1} b\right\}
$$

Typically, $j=1$ or $j=2$.

- The Arnoldi process can be replaced by some other Krylov subspace method for reducing A, such as Golub-Kahan bidiagonalization.
- The solution subspace is independent of L. For some problems this is a disadvantage.

Reduction methods for matrix pairs $\{A, L\}$
Reduction method by Li and Ye:
Generalizes the Arnoldi process to matrix pairs:

$$
\begin{aligned}
A V_{k} & =V_{2 k} H_{2 k, k}^{(A)} \\
L V_{k} & =V_{2 k+1} H_{2 k+1, k}^{(L)}
\end{aligned}
$$

where $V_{2 k+1}$ has orthonormal columns with
$V_{2 k+1} e_{1}=b /\|b\|$. The matrices $H_{2 k, k}^{(A)}$ and $H_{2 k+1, k}^{(L)}$ are upper "super Hessenberg".

Example: Matrices for $k=4$.

$$
H_{8,4}^{(A)}=\left[\begin{array}{cccc}
* & * & * & * \\
* & * & * & * \\
& * & * & * \\
* & * & * \\
& * & * \\
& * & * \\
& & * \\
& & *
\end{array}\right], \quad H_{9,4}^{(L)}=\left[\begin{array}{llll}
* & * & * & * \\
* & * & * & * \\
* & * & * & * \\
& * & * & * \\
* & * & * \\
& & * & * \\
& & * & * \\
& & & * \\
& & & \\
& & & \\
& & *
\end{array}\right]
$$

Solution subspace $\mathcal{R}\left(V_{k}\right)$ generated by the Li-Ye method with initial vector b is of the form

$$
\begin{gathered}
\mathbf{K}_{k}(A, L, b)=\operatorname{span}\left\{b, A b, L b, A^{2} b, L A b, A L b, L^{2} b,\right. \\
\left.A^{3} b, L A^{2} b, A L A b, A^{2} L b, L A L b, A L^{2} b, L^{3} b, \ldots\right\}
\end{gathered}
$$

The method alternatingly evaluates a matrix-vector product with A and a matrix-vector product with L. Generalized Arnoldi process for matrix pairs $\{A, L\}$:

1. Given q_{1} with $\left\|q_{1}\right\|=1$;
2. $N:=1$;
3. for $j=1,2, \ldots, k$ do
4. if $j>N$ then exit;
5. $\quad \hat{q}:=A q_{j}$;
6. for $i=1,2, \ldots N$ do
7. $h_{A ; i, j}:=q_{i}^{T} \hat{q} ; \hat{q}:=\hat{q}-q_{i} h_{A ; i, j} ;$
8. end for
9. $\quad h_{A ; N+1, j}:=\|\hat{q}\|$;
10. if $h_{A ; N+1, j}>0$ then
11.

$$
N:=N+1 ; q_{N}:=\hat{q} / h_{A ; N, j} ;
$$

12. end if
13. $\quad \hat{q}:=L q_{j}$;
14. for $i=1,2, \ldots N$ do
15. $\quad h_{L ; i, j}:=q_{i}^{T} \hat{q} ; \hat{q}:=\hat{q}-q_{i} h_{L ; i, j}$;
16. end for
17. $\quad h_{L ; N+1, j}:=\|\hat{q}\|$;
18. If $h_{L ; N+1, j}>0$ then
19.

$$
N:=N+1 ; q_{N}:=\hat{q} / h_{A ; N, j} ;
$$

20. end if
21. end for

The scalar N in the algorithm tracks the number of vectors q_{i} generated so far during the computations. Let α_{k} and β_{k} denote the values of N at the end of Lines 12 and 20 , respectively, when $j=k$.

$$
\begin{aligned}
A Q_{(:, 1: k)} & =Q_{\left(:, 1: \alpha_{k}\right)} H_{A\left(1: \alpha_{k}, 1: k\right)} \\
L Q_{(:, 1: k)} & =Q_{\left(:, 1: \beta_{k}\right)} H_{L\left(1: \beta_{k}, 1: k\right)}
\end{aligned}
$$

We solve

$$
\min _{x \in \mathbf{K}_{k}(A, L, b)}\left\{\|A x-b\|_{2}^{2}+\mu\|L x\|_{2}^{2}\right\}
$$

by using the generalized Arnoldi decompositions. Let $x=V_{k} y$. Then we obtain the reduced problem

$$
\min _{y \in \mathbf{R}^{k}}\left\{\left\|H_{2 k, k}^{(A)} y-e_{1}\right\| b\left\|_{2}\right\|_{2}^{2}+\mu\left\|H_{2 k+1, k}^{(L)} y\right\|_{2}^{2}\right\}
$$

It can be solved by the GSVD.

Example: We would like to determine the unavailable noise-free image represented by 412×412 pixels.

The entries of the vector $b \in \mathbf{R}^{412^{2}}$ store the pixel values, ordered column-wise, of the available blur- and noise-contaminated image.

The blurring matrix $A \in \mathbf{R}^{412^{2} \times 412^{2}}$ represents severe Gaussian blur. The image also has been contaminated by 30% Gaussian noise. We apply the Li-Ye method to solve

$$
\min _{x \in \mathbf{K}_{k} l(A, L, b)}\left\{\|A x-b\|_{2}^{2}+\mu\|L x\|_{2}^{2}\right\}
$$

for two different regularization matrices L :

- $L=\Delta$, the standard discrete Laplace operator based on the five-point stencil.
- L is a discretized and linearized Perona-Malik operator:

$$
\mathcal{L}(x)=\operatorname{div}\left(g\left(|\nabla x|^{2}\right) \nabla x\right), \quad g(s)=\frac{1}{1+\frac{s}{\rho}}, \quad \rho=10^{-4}
$$

Restored image using $L=\Delta .6$ generalized Arnoldi steps.

Restored image with L determined by the Perona-Malik operator. Two step of GMRES give an approximate restoration with which \mathcal{L} is defined.

Edge map for restoration with Perona-Malik operator.

Some remarks:

- To work well with the discrepancy principle, e_{1} should be replaced by $P_{\mathcal{R}\left(H_{2 \ell, \ell}^{(A)}\right.} e_{1}$, i.e.,

$$
\begin{aligned}
\left\|A x_{\mu}-b\right\|_{2} & =\left\|H_{2 k, k}^{(A)} y_{\mu}-e_{1}\right\| b\left\|_{2}\right\|_{2} \\
& \geq\left\|H_{2 k, k}^{(A)} y_{\mu}-P_{\mathcal{R}\left(H_{2 k, k}^{(A)}\right)} e_{1}\right\| b\left\|_{2}\right\|_{2}
\end{aligned}
$$

The discrepancy principle is applied to the right-hand side.

- The method requires the generation of about twice as many orthonormal vectors as the dimension of the solution subspace.

Reduction method based on the flexible Arnoldi process:

Let $A \in \mathbf{R}^{n \times n}$. Apply k steps of the flexible Arnoldi process (due to Saad) to A with initial vector b. This gives a decomposition

$$
A V_{k}=U_{k+1} H_{k+1, k}
$$

where U_{k+1} has orthonormal columns with
$U_{k+1} e_{1}=b /\|b\|$.
Columns of V_{k} arbitrary. We use the QR factorization

$$
L V_{k}=Q_{k} R_{k}
$$

The flexible Arnoldi algorithm
0. Input $A \in \mathbf{R}^{n \times n},\left\{v_{j}\right\}_{j=1}^{k} \subset \mathbf{R}^{n}, b \in \mathbf{R}^{n}$;

1. Let $u_{1}=b /\|b\|_{2}$;
2. for $j=1, \ldots, k$ do
2.1. $w=A v_{j}$;
2.3. for $i=1, \ldots, j$ do

$$
h_{i, j}=w^{T} u_{i} ; w=w-h_{i, j} u_{i} ;
$$

2.4. end for
2.5. $h_{j+1, j}=\|w\|_{2}$;
2.6. $u_{j+1}=w / h_{j+1, j}$;
3. end for

Then

$$
\min _{x \in \mathcal{R}\left(V_{k}\right)}\left\{\|A x-b\|_{2}^{2}+\mu\|L x\|_{2}^{2}\right\}
$$

simplifies to the small problem

$$
\min _{y \in \mathbf{R}^{k}}\left\{\left\|H_{k+1, k} y-e_{1}\right\| b\left\|_{2}\right\|_{2}^{2}+\mu\left\|R_{k} y\right\|_{2}^{2}\right\}
$$

which we can solve with the GSVD.
We determine the column v_{j+1} of V_{ℓ} by evaluating

$$
w=A v_{j} \quad \text { or } \quad w=L v_{j}
$$

and then orthogonalizing w against the columns of V_{j}.

Example: Alternate between $w=A v_{j}$ and $w=L v_{j}$. Then

$$
\mathcal{R}\left(V_{k}\right)=\operatorname{span}\left\{b, A b, L b, A^{2} b, L A b, A L b, L^{2} b, A^{3} b, \ldots\right\}
$$

If the use of 4 vectors $w=L v_{j}$ is followed by one vector $w=L v_{j}$ in a cyclic fashion, then

$$
\mathcal{R}\left(V_{k}\right)=\operatorname{span}\left\{b, L b, L^{2} b, L^{3} b, L^{4} b, A b, L^{5} b, \ldots\right\}
$$

The latter space often gives better results than the former when L is a difference operator.

Example: Consider the inverse Laplace transform

$$
\int_{0}^{\infty} \exp (-s t) x(t) d t=\frac{1}{s+1 / 2}, \quad 0 \leq s<\infty
$$

whose solution is $x(t)=\exp (-t / 2)$. Discretize by MATLAB function i_laplace from Regularization Tools. Gives $A \in \mathbf{R}^{500 \times 500}$ and discretized scaled solution $\widehat{x} \in \mathbf{R}^{500}$. The data vector b has 0.1% Gaussian noise.

The regularization matrix is tridiagonal and zero padded:

$$
L=\left[\begin{array}{cccccc}
0 & 0 & \ldots & & & 0 \\
-1 & 2 & -1 & & & \\
& -1 & 2 & -1 & & \\
& & \ddots & \ddots & \ddots & \\
& & & -1 & 2 & -1 \\
0 & \ldots & & & 0 & 0
\end{array}\right] \in \mathbf{R}^{500 \times 500}
$$

Use $w=A v_{j}$ every 50th step. Figure shows computed solution x_{μ} after 92 steps (red solid curve), GSVD solution (blue dashed curve), and desired solution \widehat{x} (blue dash-dotted curve).

Some remarks:

- The method allows much flexibility in the choice of solution subspace.
- The method requires A and L to be square.
- The flexible Arnoldi process can be applied without Tikhonov regularization.

The flexible Arnoldi process and truncated iteration:
Flexible Arnoldi gives sequence of decompositions

$$
A V_{k}=U_{k+1} H_{k+1, k}, \quad k=1,2,3, \ldots
$$

where U_{k+1} has orthonormal columns, $U_{k+1} e_{1}=b /\|b\|$. We let V_{k} have orthonormal columns. Then

$$
\min _{x \in \mathcal{R}\left(V_{k}\right)}\|A x-b\|_{2}=\min _{y \in \mathbf{R}^{k}}\left\|H_{k+1, k} y-e_{1}\right\| b\left\|_{2}\right\|_{2}
$$

Denote solution by y_{k}. Terminate the iterations as soon as

$$
\left\|H_{k+1, k} y_{k}-e_{1}\right\| b\left\|_{2}\right\|_{2} \leq \delta . \quad \text { (discrepancy principle) }
$$

Gives similar results as flexible Arnoldi with Tikhonov regularization for $L=I$.

A simple extension of the flexible Arnoldi-based method:

We determine the last column v_{j+1} of V_{j+1} by evaluating

$$
w=A v_{j} \quad \text { or } \quad w=L^{*} L v_{j}
$$

and then orthogonalizing w against the columns of V_{j}. This allows L to be rectangular.

Example: We would like to determine the unavailable noise-free image represented by 256×256 pixels.

The entries of the vector $b \in \mathbf{R}^{256^{2}}$ store the pixel values, ordered column-wise, of the available image contaminted by Gaussian blur and 1% Gaussian noise.

The regularization matrix is given by
$L=\left[\begin{array}{ccc}I & \otimes & L_{1} \\ L_{1} & \otimes & I\end{array}\right], \quad L_{1}=\frac{1}{2}\left[\begin{array}{ccccc}1 & -1 & & & \\ & 1 & -1 & & \\ & & \ddots & \ddots & \\ & & & 1 & -1\end{array}\right]$
with $I \in \mathbf{R}^{256 \times 256}, L_{1} \in \mathbf{R}^{255 \times 256}$, and $L \in \mathbf{R}^{130560 \times 65536}$.

Restored image after 22 steps with one vector $w=A v_{j}$ for every 10 vectors $w=L^{*} L v_{j}$ for constructing the solution subspace.

Some remarks:

- The method allows a lot of flexibility in the choice of solution subspace and regularization matrix.
- The method requires A to be square.

A generalized Golub-Kahan-type reduction method for matrix pairs.

Matrix-vector products are evaluated with the matrices A, L, A^{T}, and L^{T} in a periodic fashion. With initial vector b, we have after k steps

$$
\begin{array}{lll}
A V_{k} & =U_{k+1} H_{k+1, k}, & L V_{k}=W_{k} K_{k, k}, \\
A^{T} U_{k}=V_{2 k-2} H_{k, 2 k-2}^{T}, & & L^{T} W_{k}=V_{2 k+1} K_{k, 2 k+1}^{T},
\end{array}
$$

where $U_{k+1}, V_{2 k+1}$, and W_{k} have orthonormal columns with $U_{k+1} e_{1}=b /\|b\|$.

The matrix H has the structure

$$
H=\left[\begin{array}{cccccccc}
\times & & & & & & & \\
\times & \times & & & & & & \\
& \times & \times & \times & & & & \\
& & \times & \times & \times & \times & & \\
& & & \times & \times & \times & \times & \times
\end{array}\right]
$$

and
the structure of K is given by

$$
K=\left[\begin{array}{ccccccccc}
\times & \times & \times & & & & & & \\
& \times & \times & \times & \times & & & & \\
& & \times & \times & \times & \times & \times & & \\
& & & \times & \times & \times & \times & \times & \times
\end{array}\right] .
$$

The algorithm has short recurrence relations with the number of terms increasing with the number of steps k.

The solution subspace is of the form

$$
\begin{aligned}
\mathcal{R}\left(V_{k}\right)= & \operatorname{span}\left\{A^{*} b,\left(A^{*} A\right) A^{*} b,\left(B^{*} B\right) A^{*} b\right. \\
& \left(A^{*} A\right)^{2} A^{*} b,\left(B^{*} B\right)\left(A^{*} A\right) A^{*} b \\
& \left.\left(A^{*} A\right)\left(B^{*} B\right)\left(A^{*} A\right) A^{*} b,\left(B^{*} B\right)^{2} A^{*} b, \ldots\right\}
\end{aligned}
$$

Example: We would like to determine the unavailable noise-free image represented by 384×384 pixels.

The entries of the vector $b \in \mathbf{R}^{384^{2}}$ store the pixel values, ordered column-wise, of the available image contaminted by Gaussian blur and 10% Gaussian noise.

Restored image after 7 steps and regularization matrix determined by a discretization and linearization of the Perona-Malik operator, similarly as above.

Observations:

- A variety of iterative methods can be derived for the solution of discrete ill-posed problems with pairs of large matrices. Extensions to matrix n-tuplets is straightforward. They are of interest for multiparameter Tikhonov regularization.
- Iterative methods may determine approximate solutions of higher quality than direct solution methods.

The Singular value decomposition applied to large-scale ill-posed problems

Let $A \in \mathbf{R}^{n \times n}, b \in \mathbf{R} \backslash\{0\}$. The symmetric Lanczos process applied to A with initial vector b gives the Lanczos decomposition

$$
A V_{k}=V_{k+1} T_{k+1, k}
$$

where the matrix

$$
V_{k+1}=\left[V_{k}, v_{k+1}\right]=\left[v_{1}, v_{2}, \ldots, v_{k+1}\right] \in \mathbf{R}^{n \times(k+1)}
$$

has orthonormal columns such that

$$
\mathcal{R}\left(V_{k+1}\right)=\mathbf{K}_{k+1}(A, b)=\operatorname{span}\left\{b, A b, \ldots, A^{k} b\right\}
$$

Moreover, the matrix

$$
T_{k+1, k}=\left[\begin{array}{ccccc}
\alpha_{1} & \beta_{2} & & & \\
\beta_{2} & \alpha_{2} & \beta_{3} & & \\
& \ddots & \ddots & \ddots & \\
& & \beta_{k-1} & \alpha_{k-1} & \beta_{k} \\
& & & \beta_{k} & \alpha_{k} \\
& & & & \beta_{k+1}
\end{array}\right] \in \mathbf{R}^{(k+1) \times k}
$$

is tridiagonal, and $T_{k, k}$ is the leading $k \times k$ symmetric submatrix.

The Lanczos decomposition can be computed by the symmetric Lanczos algorithm.

The symmetric Lanczos algorithm.
1: Input: Symmetric matrix $A \in \mathbf{R}^{n \times n}$, initial vector $b \in \mathbf{R}^{m}$, number of steps k.
2: $v_{0}=0, \beta_{1}=\|b\|_{2}, v_{1}=b / \beta_{1}$
3: for $j=1$ to k
4: $\quad \widetilde{v}=A v_{j}-\beta_{j} v_{j-1}$
5: $\quad \alpha_{j}=v_{j}^{T} \widetilde{v}$
6: $\quad \widetilde{v}=\widetilde{v}-\alpha_{j} v_{j}$
7: $\quad \beta_{j+1}=\|\widetilde{v}\|_{2}$
8: $\quad v_{j+1}=\widetilde{v} / \beta_{j+1}$
9: end for
10: Output: Lanczos decompositions.

Let A stem from the discretization of an ill-posed problem and assume that b is contaminated by error.

Instead of solving the least-squares problem

$$
\min _{x \in \mathbf{R}^{n}}\|A x-b\|_{2}
$$

we compute an approximate solution of the reduced problem

$$
\begin{aligned}
\min _{x \in \mathbf{K}_{k}(A, b)}\|A x-b\|_{2} & =\min _{y \in \mathbf{R}^{k}}\left\|A V_{k} y-b\right\|_{2} \\
& =\min _{y \in \mathbf{R}^{k}}\left\|V_{k+1} T_{k+1, k} y-V_{k+1} e_{1}\right\| b\left\|_{2}\right\|_{2} \\
& =\min _{y \in \mathbf{R}^{k}}\left\|T_{k+1, k} y-e_{1}\right\| b\left\|_{2}\right\|_{2}
\end{aligned}
$$

Define the spectral factorization

$$
A=W \Lambda W^{T},
$$

where $W \in \mathbf{R}^{n \times n}$ is orthogonal and

$$
\Lambda=\operatorname{diag}\left[\lambda_{1}, \ldots, \lambda_{n}\right] \in \mathbf{R}^{n \times n}
$$

with

$$
\left|\lambda_{1}\right| \geq\left|\lambda_{2}\right| \geq \ldots \geq\left|\lambda_{n}\right| \geq 0 .
$$

Theorem 1: Let A be symmetric positive semidefinite. Assume that the Lanczos process applied to A does not break down, i.e., that n steps can be carried out. Define $\beta_{n+1}=0$. Then

$$
\prod_{j=2}^{k+1} \beta_{j} \leq \prod_{j=1}^{k} \lambda_{j}, \quad k=1,2, \ldots, n
$$

Proof: Define the monic polynomial $p_{k}(t)=\prod_{j=1}^{k}\left(t-\lambda_{j}\right)$ defined by the k largest eigenvalues of A. Then

$$
\left\|p_{k}(A)\right\|_{2}=\left\|p_{k}(\Lambda)\right\|_{2}=\max _{k+1 \leq j \leq n}\left|p_{k}\left(\lambda_{j}\right)\right| \leq\left|p_{k}(0)\right|=\prod_{j=1}^{k} \lambda_{j} .
$$

Therefore,

$$
\left\|p_{k}(A) b\right\|_{2} \leq\|b\|_{2} \prod_{j=1}^{k} \lambda_{j}
$$

Application of n steps of the Lanczos process gives

$$
A V_{n}=V_{n} T_{n}, \quad V_{n} \in \mathbf{R}^{n \times n} \text { orthogonal }
$$

Hence,

$$
p_{k}(A) b=\widehat{V}_{n} p_{k}\left(T_{n}\right) \widehat{V}_{n}^{T} b=\widehat{V}_{n} p_{k}\left(T_{n}\right) e_{1}\|b\|
$$

and

$$
\left\|p_{k}(A) b\right\|_{2}=\left\|p_{k}\left(T_{n}\right) e_{1}\right\|_{2}\|b\|_{2} \geq\|b\|_{2} \prod_{j=2}^{k+1} \beta_{j}
$$

The last inequality follows by direct computations. \square

Corollary 1. Let $A \in \mathbf{R}^{n \times n}$ be symmetric positive semidefinite. Assume that the eigenvalues of A "cluster" at the origin and that the Lanczos method applied to A does not break down. Further, assume that there is a constant M independent of j such that

$$
\beta_{j+1} \leq M \min \left\{\beta_{1}, \beta_{2}, \ldots, \beta_{j}\right\}, \quad j=1,2, \ldots
$$

Then both the subdiagonal and diagonal entries of $T_{\ell+1, \ell}$ decrease to zero as the row number increases (and is large enough).

Proof. The decrease of the subdiagonal entries of $T_{\ell+1, \ell}$ follows from Theorem 1. The matrix T_{n} is similar to A.
Therefore its eigenvalues cluster at zero. Since the
off-diagonal of T_{n} entries are tiny, the eigenvalues are close to the diagonal entries. They therefore also have to be tiny. \square

Corollary 2: Let A be symmetric. Assume that the Lanczos process applied to A does not break down, i.e., that n steps can be carried out. Define $\beta_{n+1}=0$. Then

$$
\prod_{j=2}^{k+1} \beta_{j} \leq \prod_{j=1}^{k}\left(2\left|\lambda_{j}\right|\right), \quad k=1,2, \ldots, n
$$

The requirement that n steps of the Lanczos process can be removed by bounding $k<n$.

Corollary 3: Under the conditions of Corollary 2, the span of the Lanczos vector v_{k} is an accurate approximations the span of k th eigenvector for large k.

Proof: This follows from the fact that $\beta_{j} \searrow 0$ as j increases. \square

Consequences:

- It may not be necessary to compute the EVD of a large matrix - just use a few steps of Lanczos tridiagonalization. It is cheaper.
- If it is convenient to use the EVD of a large matrix A instead of a partial Lanczos tridiagonalization, then its computation requires only very few steps with a restarted Lanczos tridiagonalization method. This follows from the fact that the span of Lanczos vectors with large index is close to the span of corresponding eigenvectors.

Non-symmetric problems

$k \ll n$ steps of Golub-Kahan bidiagonalization (GKB) applied to $A \in \mathbf{R}^{m \times n}$ with initial vector $\widehat{u}_{1}=b /\|b\|$ gives the decompositions

$$
A \widehat{V}_{k}=\widehat{U}_{k+1} B_{k+1, k}, \quad A^{T} \widehat{U}_{k}=\widehat{V}_{k} B_{k, k}^{T}
$$

where

$$
\begin{aligned}
\widehat{U}_{k+1} & =\left[\widehat{U}_{k}, \widehat{u}_{k+1}\right]=\left[\widehat{u}_{1}, \widehat{u}_{2}, \ldots, \widehat{u}_{k+1}\right] \in \mathbf{R}^{m \times(k+1)} \\
\widehat{V}_{k} & \in \mathbf{R}^{n \times k}, \quad \widehat{U}_{k+1}^{T} \widehat{U}_{k+1}=I, \quad \widehat{V}_{k}^{T} \widehat{V}_{k}=I \\
\mathcal{R}\left(\widehat{V}_{k}\right) & =\mathbf{K}_{k}\left(A^{T} A, A^{T} b\right)=\operatorname{span}\left\{A^{T} b, \ldots,\left(A^{T} A\right)^{k-1} A^{T} b\right\} .
\end{aligned}
$$

Moreover,

$$
B_{k+1, k}=\left[\begin{array}{cccc}
\alpha_{1} & & & \\
\beta_{2} & \alpha_{2} & & \\
& \ddots & \ddots & \\
& & \beta_{k} & \alpha_{k} \\
& & & \beta_{\ell+1}
\end{array}\right] \in \mathbf{R}^{(k+1) \times k}
$$

is lower bidiagonal with leading $k \times k$ submatrix $B_{k, k}$.

Instead of solving the original least-squares problem, we solve the reduced problem

$$
\begin{aligned}
\min _{x \in \mathbf{K}_{k}\left(A^{T} A, A^{T} b\right)}\|A x-b\|_{2} & =\min _{y \in \mathbf{R}^{k}}\left\|A \widehat{V}_{k} y-b\right\|_{2} \\
& =\min _{y \in \mathbf{R}^{k}}\left\|B_{k+1, k} y-e_{1}\right\| b\left\|_{2}\right\|_{2} \longrightarrow y_{k}
\end{aligned}
$$

The solution $x_{k}^{\mathrm{GKB}}:=\widehat{V}_{k} y_{k}$ is cheaper to compute than x_{k}^{TSVD}.

Theorem 2: Let $A \in \mathbf{R}^{m \times n}, m \geq n$, have the singular values $\sigma_{1} \geq \sigma_{2} \geq \ldots \geq \sigma_{n} \geq 0$. Assume that the GKB applied to A with initial vector $u_{1}=b /\|b\|_{2}$ does not break down. Let

$$
C_{k+1, k}=\left[\begin{array}{cccc}
\alpha_{1} & & & \\
\beta_{2} & \alpha_{2} & & \\
& \ddots & \ddots & \\
& & \beta_{k} & \alpha_{k} \\
& & & \beta_{k+1}
\end{array}\right]
$$

Then

$$
\prod_{j=2}^{k+1} \alpha_{j} \beta_{j} \leq \prod_{j=1}^{k} \sigma_{j}^{2}, \quad k=1,2, \ldots, n-1
$$

Assume that there is a constant M such that $\alpha_{j+1} \beta_{j+1} \leq M \min \left\{\alpha_{1} \beta_{1}, \alpha_{2} \beta_{2}, \ldots, \alpha_{j} \beta_{j}\right\}, \quad j=1,2, \ldots$.

Then the products $\alpha_{j} \beta_{j} \searrow 0$ as j increases.
Proof: The result can be shown, e.g., by first considering the application of the symmetric Lanczos method to a symmetric positive definite matrix. Application of GKB to A is equivalent to application of the symmetric Lanczos method to $A^{T} A$. \square

Corollary 4: Under the conditions of Theorem 2, the span of the GKB vector \widehat{v}_{k} is an accurate approximations the span of k th left singular vector for large k.

Proof: This follows from the fact that $\alpha_{j} \beta_{j} \searrow 0$ as j increases. \square

Consequences:

- It may not be necessary to compute the SVD of a large matrix - just use GKB. It is cheaper.
- If it is convenient to use the SVD of a large matrix A instead of a GKB, then its computation requires only very few steps with a restarted Lanczos bidiagonalization method, This follows from the fact that the span of GKB vectors with large index is close to the span of corresponding singular vectors.

Example: Test problem Tomo from Regularization Tools by Hansen. It arises from the discretization of a 2D tomography problem. Yields a linear system

$$
A x=b, \quad A \in \mathbf{R}^{225 \times 225}, \quad x, b \in \mathbf{R}^{225}
$$

1% relative error in b.

Convergence history for GKB and TSVD. GKB solution error minimal at step $\ell=66$; TSVD solution error minimal at step $\ell=216$.
solution

TSVD - k=66

LSQR - k=66

TSVD - k=216

Exact and computed solutions by GKB (=LSQR) at step 66 and TSVD at steps 66 and 216.

Example: Discretaization of integral equation "baart" from Regularization Tools by Hansen,

$$
\int_{0}^{\pi} \exp (-s t) x(t) d t=2 \frac{\sinh (s)}{s}, \quad 0 \leq s \leq \frac{\pi}{2}
$$

by Galerkin method with box functions as test and trial functions. Gives matrix $A \in \mathbf{R}^{500 \times 500}$.

Apply restarted Lanczos bidiagonalization method to determine the k largest singular triplets.

Number of desired Size of the largest Number of singular triplets k bidiagonal matrix matrix-vector products

10	$\lceil 1.5 k\rceil$	30
15	$\lceil 1.5 k\rceil$	46
20	$\lceil 1.5 k\rceil$	60
25	$\lceil 1.5 k\rceil$	76

Number of desired Size of the largest Number of singular triples k bidiagonal matrix matrix-vector products

10	$k+1$	22
15	$k+1$	32
20	$k+1$	42
25	$k+1$	52

