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Lecture 3: Block iterative methods,

preconditioning, iterated Tikhonov.

Outline of Lecture 3:

• Block Krylov subspace methods, application to color

image restoration

• Preconditining

• Iterated Tikhonov

• The method by Donatelli and Hanke



Color image restoration

Color images are represented by three channels: red,

green, and blue. Hyperspectral images have more

“colors” and require more channels. See Hansen, Nagy,

and O’Leary.

Consider k-channel images. Let b(i) ∈ Rn2
represent the

blur- and noise-contaminated image in channel i, let

e(i) ∈ Rn2
describe the noise.

The contaminated images of all channels b(i) can be

represented by

b = [(b(1))T , . . . , (b(k))T ]T .



The degradation model is of the form

b = Hxexact + e,

where

H = Ak ⊗ A ∈ Rn2k×n2k

with

• A ∈ Rn2×n2
modelling within-channel blurring,

• Ak ∈ Rk×k modelling cross-channel blurring.

Determine approximation of xexact by computing

approximate solution of

Hx = b.



Alternatively, the contaminated images of all channels

b(i) can be represented by

B = [b(1), . . . , b(k)].

Define the linear operator

A : Rn2×k → Rn2×k : A(X) := AXAT
k .

The degradation model can be written as

B = A(Xexact) + E,

where Xexact = [x
(1)
exact, . . . , x

(k)
exact].

Let Bexact = A(Xexact). Denote A(X) by AX.



Tikhonov regularization

Solve the minimization problem

min
X

{‖AX − B‖2F + µ‖X‖2F},

where ‖ · ‖F denotes the Frobenius norm and µ > 0 is a

regularization parameter.

The normal equations, which are obtained by requiring

the gradient with respect to X to vanish, are given by

(ATA+ µI)X = ATB.



They have the unique solution

Xµ =
(

ATA+ µI
)−1

ATB

for any µ > 0. The discrepancy principle requires that

µ > 0 be determined so that

‖B − AXµ‖F = ηδ, δ = ‖B − Bexact‖F .

This is possible for most reasonable B.



Solution methods

• Trival method: Compute approximate solution of

each system of equations

Ax = b(j), j = 1, 2, . . . , k, (1)

independently.

• Apply partial block Golub–Kahan bidiagonalization.

• Apply partial global Golub–Kahan bidiagonalization.

• Compute partial SVD of A and apply to each system

(1) independently



Block Golub–Kahan bidiagonalization (BGKB)

Define the QR factorization

B = P1R1,

where P1 ∈ Rn2×k has orthonormal columns, i.e.,

P T
1 P1 = I

and R1 ∈ Rk×k is upper triangular.



ℓ steps of the BGKB applied to A with initial block

vector P1 gives the decompositions

AQ
(k)
ℓ = P

(k)
ℓ+1C

(k)
ℓ+1,ℓ, ATP

(k)
ℓ = Q

(k)
ℓ C

(k)T

ℓ,ℓ ,

where

P
(k)
ℓ+1 = [P

(k)
ℓ , Pℓ] = [P1, . . . , Pℓ+1] ∈ Rn2×(ℓ+1)k,

Q
(k)
ℓ = [Q1, . . . , Qℓ] ∈ Rn2×ℓk

have orthonormal columns, i.e.,

(P
(k)
ℓ+1)

TP
(k)
ℓ+1 = I, (Q

(k)
ℓ )TQ

(k)
ℓ = I.



The lower block bidiagonal matrix

C
(k)
ℓ+1,ℓ :=





















L1

R2 L2

. . . . . .

Rℓ Lℓ

Rℓ+1





















∈ Rk(ℓ+1)×kℓ

has lower triagular blocks Lj ∈ Rk×k and upper

triangular blocks Rj ∈ Rk×k; C
(k)
ℓ,ℓ ∈ Rkℓ×kℓ is the leading

submatrix of C
(k)
ℓ+1,ℓ.



Further,

R(Q
(k)
ℓ ) = Kℓ(A

TA,ATB)

= span{ATB, (ATA)ATB, . . . (ATA)ℓ−1ATB}.

Let X = Q
(k)
ℓ Y with Y ∈ Rkℓ×kℓ. Then

min
X∈Kℓ(ATA,ATB)

{‖AX − B‖2F + µ‖X‖2F}

= min
Y ∈Rkℓ×kℓ

{‖AQ(k)
ℓ Y − B‖2F + µ‖Y ‖2F}

= min
Y ∈Rkℓ×kℓ







∥

∥

∥

∥

∥

∥

C
(k)
ℓ+1,ℓY −





R1

0





∥

∥

∥

∥

∥

∥

2

F

+ µ‖Y ‖2F







.

Solve by QR factorization of C
(k)
ℓ+1,ℓ.



Gives Yµ and Xµ = P
(k)
ℓ Yµ. Determine µ > 0 by

discrepancy principle, i.e., so that

‖AXµ − B‖F =

∥

∥

∥

∥

∥

∥

C
(k)
ℓ+1,ℓYµ −





R1

0





∥

∥

∥

∥

∥

∥

F

= ηδ.

Requires that ℓ be sufficiently large and that error in B is

reasonable (< 100%). Then the desired µ > 0 is the

unique solution of a nonlinear equation determined by

the reduced problem.



Global Golub–Kahan bidiagonalization (GGKB)

Define the matrix inner product

〈M,N〉 = tr(MTN), M,N ∈ Rn2×k.

Then

‖M‖F = 〈M,M〉1/2.

Application of ℓ steps of GGKB to A with initial block

vector B determines the lower bidiagonal matrix



Cℓ+1,ℓ =





























ρ1

σ2 ρ2
. . .

. . .

σℓ−1 ρℓ−1

σℓ ρℓ

σℓ+1





























∈ R(ℓ+1)×ℓ

and the matrices

U
(k)
ℓ+1 = [U1, U2, . . . , Uℓ+1] ∈ Rn2×(ℓ+1)k,

V
(k)
ℓ = [V1, V2, . . . , Vℓ] ∈ Rn2×ℓk,



where Ui, Vj ∈ Rn2×k, U1 = B/‖B‖F , and

〈Ui, Uj〉 = 〈Vi, Vj〉 =







1 i = j,

0 i 6= j.

Let Cℓ,ℓ be the leading ℓ× ℓ submatrix of Cℓ+1,ℓ. If ℓ is

small enough so that no breakdown occurs, then

A
[

V1, V2, . . . , Vℓ

]

= U
(k)
ℓ+1(Cℓ+1,ℓ ⊗ Ik),

AT
[

U1, U2, . . . , Uℓ

]

= V
(k)
ℓ (CT

ℓ,ℓ ⊗ Ik).

Recall that A[V1, V2, . . . , Vℓ] stands for

[A(V1),A(V2), . . . ,A(Vℓ)]; similarly for ATUj.



Determine an approximate solution of the form

X = V
(k)
ℓ (y ⊗ Ik), y ∈ Rℓ,

of the Tikhonov minimization problem

min
X=V

(k)
ℓ

(y⊗Ik)

{‖AX − B‖2F + µ‖X‖2F}

= min
y∈Rℓ

{‖Cℓ+1,ℓy − e1‖B‖2F‖
2
2 + µ‖y‖22}

Denote the solution by yµℓ
. Choose µ = µℓ > 0 so that

yµℓ
and therefore Xµℓ

= V
(k)
ℓ (yµℓ

⊗ Ik) satisfy the

discrepancy principle

‖AXµℓ
− B‖F = ‖Cℓ+1,ℓyµℓ

− e1‖B‖2F‖2 = ηδ.



Standard Golub–Kahan bidiagonalization for

multiple right-hand sides

The largest singular triplets of A can be approximated

well by carrying out a few GKB steps. This suggests the

solution method:

• Apply ℓ bidiagonalization steps to A with initial

vector b(1). Gives decompositions

AVℓ = Uℓ+1Cℓ+1,ℓ, ATUℓ = VℓC
T
ℓ,ℓ,

with Vℓ ∈ Rn2×ℓ, Uℓ+1 ∈ Rn2×(ℓ+1) such that

V T
ℓ Vℓ = I, UT

ℓ+1Uℓ+1 = I, and Uℓe1 = b/‖b‖2.

Moreover, Cℓ+1,ℓ ∈ R(ℓ+1)×ℓ lower bidiagonal.



• Then

min
x∈R(Vℓ)

{‖Ax− b(1)‖22 + µ‖x‖22}

= min
y∈Rℓ

{‖Cℓ+1,ℓy − UT
ℓ+1b

(1)‖22 + µ‖y‖22}.

Determine µ > 0 so that the solution yµ satisfies the

discrepancy principle

‖Cℓ+1,ℓyµ − UT
ℓ+1b

(1)‖2 = ηδ(1),

where δ(1) is a bound for the error in b(1).



• Solve

min
x∈R(Vℓ)

{‖Ax− b(2)‖22 + µ‖x‖22}

= min
y∈Rℓ

{‖Cℓ+1,ℓy − UT
ℓ+1b

(2)‖22 + µ‖y‖22}.

If discrepancy principle cannot be satisfied, then

increase ℓ.

• Compute approximate solutions of

Ax = b(j), j = 3, 4, . . . , k,

similarly.



Computations require the columns of Uℓ+1 to be

numerically orthonormal to be able to accurately

compute the Fourier coefficients

UT
ℓ+1b

(j), j = 2, 3, . . . , k.



Example: Let matrix A ∈ R702×702 be determined by the

function phillips in Regularization Tools by Hansen. The

matrix is a discretization of a Fredholm integral equation

of the first kind that describes a convolution on the

interval −6 ≤ t ≤ 6. Generate 10 right-hand sides that

model smooth functions. Add noise of same noise level to

each right-hand side.



Noise level Method MVP Relative error CPU time (sec)

10−3 BGKB 100 1.46× 10−2 0.30

GGKB 200 1.31× 10−2 0.43

1 GKB 16 2.28× 10−2 0.31

10 GKBs 162 1.43× 10−2 2.08

10−2 BGKB 80 2.54× 10−2 0.24

GGKB 120 2.61× 10−2 0.30

1 GKB 10 2.52× 10−2 0.19

10 GKBs 140 2.60× 10−2 1.32



Example: Restoration of a 3-channel RGB color image

that has been contaminated by blur and noise. The

corrupted image is stored in a block vector B with three

columns (one for each channel).



Original image (left), blurred and noisy image (right).



Restored image by BGKB (left), restored image by

GGKB (right).



Noise level Method MVP Relative error CPU-time (sec)

10−3 BGKB 492 6.93× 10−2 3.86

GGKB 558 6.85× 10−2 3.95

1 GKB 112 2.64× 10−1 1.66

3 GKBs 632 1.29× 10−1 6.55

10−2 BGKB 144 9.50× 10−2 1.13

GGKB 156 9.44× 10−2 1.12

1 GKB 20 2.91× 10−1 0.32

3 GKBs 112 1.58× 10−1 1.10



Example: We restore an image that has been

contaminated by noise, within-channel blur, and

cross-channel blur. Same within-channel blur as above.

The cross-channel blur is defined by the cross-channel

blur matrix

A3 =









0.7 0.2 0.1

0.25 0.5 0.25

0.15 0.1 0.75









More details in book by Hansen, Nagy, and O’Leary.



Example: Cross-channel blurred and noisy image (left),

restored image by GGKB (right).



Noise level Method MVP Relative error CPU-time (sec)

10−3 BGKB 354 7.56× 10−2 2.74

GGKB 702 6.97× 10−2 4.99

1 GKB 112 2.64× 10−1 1.63

3 GKBs 556 1.35× 10−1 5.77



Example: Restoration of a video (from MATLAB). We

have 6 frames with 240× 240 pixels each.

Frame no. 3: Original frame (left), blurred and noisy

frame (right).



Frame no. 3: Restored frame by BGKB (left), and

restored frame by GGKB (right).



Noise level Method MVP Relative error CPU-time (sec)

10−3 BGKB 1152 5.76× 10−2 8.72

GGKB 1188 5.66× 10−2 6.23

1 GKB 130 1.19× 10−1 1.69

6 GKBs 1190 5.67× 10−2 10.79

10−2 BGKB 264 9.48× 10−2 1.65

GGKB 228 9.53× 10−2 1.21

1 GKB 34 1.40× 10−1 0.44

6 GKBs 250 9.48× 10−2 2.22



The global Arnoldi method

Compute approximate solution of

min
X∈Rm×n

‖G−

p
∑

i=1

Ai X Bi‖F ,

At least one of the matrices Ai ∈ Rm×m and Bi ∈ Rn×n

of each pair (Ai, Bi) is large and of ill-determined rank.

The matrix G ∈ Rm×n represents available

error-contaminated data, such as a blurred and

noise-contaminated image.



Tikhonov regularization:

min
X∈Rm×n







∥

∥

∥

∥

∥

p
∑

i=1

Ai X Bi −G

∥

∥

∥

∥

∥

2

F

+ µ

∥

∥

∥

∥

∥

q
∑

j=1

L
(1)
j X L

(2)
j

∥

∥

∥

∥

∥

2

F







,

where L
(1)
j ∈ Rs×m and L

(2)
j ∈ Rn×t are regularization

matrices and µ > 0 is a regularization parameter.



Let g = vec(G) ∈ Rmn and x = vec(X) ∈ Rmn. Define

K =

p
∑

i=1

BT
i ⊗ Ai, L =

q
∑

j=1

(L
(2)
j )T ⊗ L

(1)
j .

with ⊗ denoting the Kronecker product. For matrices

C ∈ Rm×m and D ∈ Rn×n, we have

C ⊗D = [cijD] ∈ Rmn×mn.

Then the Tikhonov minimization problem can be written

in the form

min
x∈Rmn

{

‖Kx− g‖22 + µ ‖Lx‖22
}

.



Define operator:

A : Rm×n −→ Rm×n : X −→ A(X) =

p
∑

i=1

Ai X Bi.

k steps of the global Arnoldi method applied to A with

initial matrix G determines the decomposition

[A(V1), . . . ,A(Vk)] = Vk+1 (Hk+1,k ⊗ In),

where Hk+1,k = [hi,j] ∈ R(k+1)×k is upper Hessenberg,

Vk+1 = [V1, V2, . . . , Vk+1] ∈ Rm×n(k+1), V1 = G/‖G‖F , and

{Vj}
k+1
j=1 is an F -orthonormal basis for the global Krylov

subspace

Kk+1(A, G) = span{G,A(G), . . . ,Ak(G)}.



The global Arnoldi algorithm

1. Let V1 = G/‖G‖F ∈ R
m×n;

2. for j = 1, . . . , k do

2.1. V = A(Vj);

2.3. for i = 1, . . . , j do

hi,j = 〈V, Vi〉F ;

V = V − hi,jVi;

2.4. end for

2.5. hj+1,j = ‖V ‖F ;

2.6. Vj+1 = V/hj+1,j ;

3. end for



An element Xk ∈ Rm×n in the global Krylov subspace

Kk+1(A, G) can be written as

Xk =
k

∑

i=1

y
(i)
k Vi = Vk (yk ⊗ In),

where yk = [y
(1)
k , y

(2)
k , . . . , y

(k)
k ]T ∈ R

k.

Moreover,

‖A(Xk)−G‖F =
∥

∥Hk+1,kyk − ‖G‖F e1‖2.



Let

Mi =

q
∑

j=1

L
(1)
j ViL

(2)
j , 1 ≤ i ≤ k.

Then

‖

q
∑

j=1

L
(1)
j XkL

(2)
j ‖2F =

k
∑

i,j=1

y
(i)
k y

(j)
k trace(MT

i Mj)

= yTk Nyk = ‖Ryk‖
2
2, N = RTR.

When N is singular, use spectral factorization instead of

Choleski factorization.



The matrix Tikhonov regularization problem with

solution restricted to X ∈ Kk(A, G) can be written as

min
y∈Rk

{

‖Hk+1,ky − ‖G‖F e1‖
2
2 + µ ‖Ry‖22

}

.

The discrepancy principle prescribes that µ > 0 be

chosen so that

‖Hk+1,ky − ‖G‖F e1‖2 = ηδ,

where

E = G−Gexact, δ = ‖E‖F , η > 1.



Computed examples

Let

ν =
‖E‖F

‖Gexact‖F
,

and define the square regularization matrices

L1 =





























1 −1 0

1 −1

1 −1

. . .
. . .

1 −1

0 0





























∈ Rn×n

and



L2 =





























0 0 0 0

−1 2 −1

−1 2 −1

. . .
. . .

. . .

−1 2 −1

0 0 0 0





























∈ Rn×n.



Example. Restoration of the image peppers, which is

represented by 256× 256 pixels. We let p = 1 and q = 1.

The available image G is corrupted by Gaussian blur and

additive zero-mean white Gaussian noise. The blurring

matrix A1 = [ai,j] ∈ R256×256 is Toeplitz with entries

ai,j =







1
σ
√
2π

exp
(

− (i−j)2

2σ2

)

, |i− j| ≤ d,

0, otherwise.
,

with d = 7 and σ = 2. We let B1 = A1.



Restoration of peppers, noise level ν = 1 · 10−2.

method (L
(1)
1 , L

(2)
1 ) k CPU time relative

(sec) error ek

SA (L1, L1) 16 2.34 9.59 · 10−2

GA (L1, L1) 16 1.42 9.59 · 10−2

SA (L1, L2) 15 2.18 9.64 · 10−2

GA (L1, L2) 15 1.13 9.64 · 10−2

SA (L2, L2) 14 2.14 9.70 · 10−2

GA (L2, L2) 14 1.08 9.70 · 10−2



Blurred and noisy image
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Example. Restoration of the image cameraman, which is

represented by 512× 512 pixels. We let p = 2 and q = 1.

The blurring operator is given by

A(X) = A1XB1 + A2XB2,

where Ai and Bi are Toeplitz matrices of the same form

as previously. The matrix G represents the blurred and

noisy image. The noise is white Gaussian.



Restoration of cameraman, noise level ν = 1 · 10−3.

method (L
(1)
1 , L

(2)
1 ) k CPU time relative

(sec) error ek

SA (L1, L1) 17 1.02 · 10−2 2.21 · 10−2

GA (L1, L1) 17 1.02 · 10−2 2.21 · 10−2

SA (L1, L2) 16 9.23 · 10−3 2.22 · 10−2

GA (L1, L2) 16 9.23 · 10−3 2.22 · 10−2

SA (L2, L2) 9 1.33 · 10−4 2.66 · 10−2

GA (L2, L2) 9 1.33 · 10−4 2.66 · 10−2



Blurred and noisy image
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Restored image
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Convergence history
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Iterated Tikhonov regularization

Tikhonov regularization in standard form

min
x∈Rn

{‖Ax− b‖22 + µ‖x− x0‖
2
2},

with A ∈ Rm×n, b ∈ Rm, x0 ∈ Rn, and µ > 0. has a

unique solution

xµ = (ATA+ µI)−1(AT b+ µx0).

The discrepancy principle prescribes that µdiscr = µ > 0

be chosen so that

‖Axµdiscr
− b‖2 = ηδ,

where η > 1 is independent of δ := ‖b− bexact‖2.



Tikhonov regularization in general form:

min
x∈Rn

{‖Ax− b‖22 + µ‖L(x− x0)‖
2
2}.

µ > 0 regularization parameter, L ∈ Rp×n regularization

matrix, x0 ∈ Rn.

Assume that

N (A) ∩ N (L) = {0}.

Then the minimization problem has the unique solution

xµ = (ATA+ µLTL)−1(AT b+ µLTLx0)

for any µ > 0.



The discrepancy principle prescribes that µL,discr = µ > 0

be chosen so that

‖AxµL,discr
− b‖2 = ηδ.

The use of a suitable L 6= I may enhance the quality of

the computed approximation of xtrue considerably.



Iterated Tikhonov regularization in standard

form:

Let

h = x− x0, r0 = b− Ax0.

Tikhonov regularization in standard form:

min
h∈Rn

{‖Ah− r0‖
2
2 + µ‖h‖22},

where

h ≈ xexact − x0, xexact ≈ x1 := x0 + h.

Repeated application of this refinement strategy gives



Algorithm:

Given x0 ∈ Rn

for k = 0, 1, . . . do

1. compute rk = b− Axk,

2. solve minh∈Rn{‖Ah− rk‖
2
2 + µk‖h‖

2
2} to obtain hk,

3. update xk+1 = xk + hk,

where µ0, µ1, . . . denotes a sequence of positive

regularization parameters.



The iterates can be expressed as

xk+1 = xk + (ATA+ µkI)
−1AT (b− Axk), k = 0, 1, . . .

The iteration method is said to be stationary when

µk = µ for all k, and nonstationary otherwise.

A common choice of regularization parameters for

nonstationary iteration is

µk = µ0q
k, µ0 > 0, 0 < q < 1.

The iterations can be terminated by the discrepancy

principle, i.e., as soon as

‖Axk − b‖ ≤ ηδ.



Nonstationay iterated Tikhonov regularization in

standard form is known to generally determine more

accurate approximations of xtrue than (standard)

Tikhonov regularization in standard form.



Nonstationary iterated Tikhonov regularization

with a general regularization matrix:

xk+1 = xk + (ATA+ µkL
TL)−1AT (b−Axk), k = 0, 1, . . .

This method combines the advantages of using a

regularization matrix L 6= I with those of nonstationary

Tikhonov regularization.



A computed example:

Let M ∈ R300×300 determined discretization of the

integral equation of the first kind “shaw” using software

in Regularization Tool by Hansen. Let

A =





M

M



 , b ∈ R600, relative error 0.1%,

L =









1 −1
. . . . . .

1 −1









∈ R299×300 bidiagonal.

Compute approximate solution using projection into

generalized Krylov subspace.



Algorithm 1:

1. Input: A ∈ Rm×n, b ∈ Rm, L ∈ Rp×n, η > 1, and δ;

2. Initialize: Columns of V0 form orthonormal basis for Krylov

subspace Kℓ(A
TA,AT b) for ℓ small; y0 = 0 ∈ Rℓ;

3. for k = 1, 2, . . . until convergence

4. Let ȳk =
[

yTk−1, 0
]T

5. Determine µk so that yk satisfies ‖AVkyk − b‖ = ηδ

6. Compute rk = ATAVkyk + µ−1
k LTLVk(yk − ȳk)−AT b

7. Normalize vk+1 = rk/‖rk‖

8. Enlarge search space Vk+1 = [Vk, vk+1]

9. end for

10. Output: approximate solution xk = Vkyk and µk .
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Figure 1: Convergence of regularization parameters for

standard Tikhonov (left), and nonstationary iterated

Tikhonov (right).
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Figure 2: Convergence of computed solutions for stan-

dard Tikhonov (left), and nonstationary iterated Tikhonov

(right).
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Figure 3: Computed solutions at convergence for stan-

dard Tikhonov (left), and nonstationary iterated Tikhonov

(right).



Transformation to standard form:

Let A ∈ Rm×n and L ∈ Rp×n. Consider

min
h∈Rn

{‖Ah− r0‖
2
2 + µ‖Lh‖22}. (2)

Define the A-weighted generalized inverse of L:

L†
A = (I − (A(I − L†L))†A)L†.

Proposition (Buccini): Let A and L be square, of the

same size, and commute. Then L†
A = L†.



Assume that the conditions of the propositionns hold.

Define

h̄ = Lh,

h(0) = (A(I − L†L))†r0,

r̄0 = r0 − Ah(0).



Then (2) can be expressed in standard form

min
h̄∈Rn

{‖AL†h̄− r̄0‖
2
2 + µ‖h̄‖22}.

Denote the solution by h̄µ.

The solution of the minimization problem in general form

is

hµ = L†h̄µ + h(0).



Stationary iterated Tikhonov with general

penalty term:

Algorithm 2: Let µ > 0 and x0 ∈ Rn.

Compute

for k = 0, 1, . . .

rk = b− Axk

if ‖rk‖2 < ηδ exit

xk+1 = xk +
(

ATA+ µLTL
)−1

AT rk

end



Convergene analysis for square matrices A and L:

Define the splitting

Rn = N (L)⊕N (L)⊥.

We will study convergence in these subspaces separately.

The minimization problem with µ > 0

min
h∈Rn

{‖Ah− rk‖
2
2 + µ‖Lh‖22}

has the solution

hk = (ATA+ µLTL)−1AT rk.



Transformation to standard form with Ā = AL† yields

hk = h⊥
k + h

(0)
k ,

where

h
(0)
k = (A(I − L†L))†rk,

r̄k = rk − Ah
(0)
k ,

h⊥
k = L†(ĀT Ā+ µI)−1ĀT r̄k.



Lemma:

h⊥
k ∈ N (L)⊥, h

(0)
k ∈ N (L), k = 0, 1, . . . .

Consider the splitting

xk = x
(0)
k + x⊥

k ,

where

x
(0)
k = x

(0)
0 +

k−1
∑

j=0

h
(0)
j ∈ N (L),

x⊥
k = x⊥

0 +
k−1
∑

j=0

h⊥
j ∈ N (L)⊥.



Proposition: Let x0 = 0. Then

x⊥
k → PN (L)⊥(A

†b) as k → ∞.

x
(0)
k = PN (L)(A

†b), k = 1, 2, . . . .

Convergence result of interest for error-free

problems:

Theorem 1: Let the matrices A and L be square and of

the same size, and let their nullspaces intersect trivially.

Let x0 = 0. Then the iterates determined by Algorithm 2

converge to the minimum norm solution A†b of the linear

system of equations Ax = b.



Convergence result of interest for error

contaminated problems:

Theorem 2: Let the assumptions of the above theorem

hold. Then Algorithm 2 terminates after finitely many,

k = kδ, steps and

lim sup
δց0

‖xtrue − xkδ‖2 = 0.



Extensions to rectangular matrices A and L:

• A rectangular: make square by zero-padding.

• L ∈ Rp×n rectangular:

– p < n: make square by zero-padding,

– p > n: compute QR factorization L = QR,

R ∈ Rn×n. Use R instead of L.



Nonstationary iterated Tikhonov with general A

and L:

Consider the iterations

xk+1 = xk+(ATA+µkL
TL)−1rk, rk = b−Axk, k = 0, 1, . . .

and assume
∞
∑

k=0

µ−1
k = ∞.



Algorithm 3: Let µ > 0 and let x0 ∈ Rn be an available

initial approximation of xtrue. Compute

for k = 0, 1, . . .

rk = b− Axk

if ‖rk‖2 < ηδ exit

xk+1 = xk + (ATA+ µkL
TL)−1AT rk

end



Theorem 3: Let the conditions of Theorem 1 hold and

let the regularization parameters satisfy
∑∞

k=0 µ
−1
k = ∞.

Then the iterates determined by Algorithm 3 converge to

the minimum norm solution A†b of the linear system of

equations Ax = b.

Theorem 4: Let the assumptions of the above theorem

hold. Then Algorithm 3 terminates after finitely many,

k = kδ, steps and

lim sup
δց0

‖xtrue − xkδ‖2 = 0.



Computed examples:

Example 1: Problem baart from Regularization Tools.

Discretize integral equation of the first kind,
∫ π

0

exp(s cos(t))x(t)dt = 2
sinh(s)

s
, 0 < s ≤

π

2
.

Gives A ∈ R1000×1000 and btrue ∈ R1000. Add 1% noise to

btrue to obtain error-contaminated right-hand side b.



Use regularization matrices L = I or

L1 =

















−1 1

. . .
. . .

−1 1

0

















, L2 =























0 0

−1 2 −1

. . .
. . .

. . .

−1 2 −1

0 0























.

Then

N (L1) = span([1, 1, . . . , 1]T ),

N (L2) = span([1, 1, . . . , 1]T , [1, 2, . . . , 1000]T ).



We report the relative error ‖xk − xtrue‖2/‖xtrue‖2 in the

approximate solution xk computed with Algorithm 3.

µk = µ0q
k, q = 0.8, k = 1, 2, . . . .

L µ0 ‖xk − xtrue‖2/‖xtrue‖2 # iterations

I 10−2 0.17131 4

L1 102 0.12331 3

L2 106 0.04290 2



Example 2: Problem gravity from Regularization Tools:

Discretize integral equation of the first kind,

∫ 1

0

d

(d2 + (s− t)2)3/2
x(t)dt = g(s), 0 ≤ s ≤ 1,

with d = 1/4 and g chosen so that

x(t) = sin(πt) +
1

2
sin(2πt).

Gives A ∈ R1000×1000 and btrue ∈ R1000. Add 1% Gaussian

noise to btrue to obtain error-contaminated right-hand

side b.



L µ0 ‖xk − xtrue‖2/‖xtrue‖2 # iterations

I 10−2 0.17001 2

L1 102 0.10165 2

L2 106 0.08148 2



Example 3: Image restoration problem. Define

Lc
1 =

















−1 1

. . .
. . .

−1 1

1 −1

















, Lc
2 =























2 −1 −1

−1 2 −1

. . .
. . .

. . .

−1 2 −1

−1 −1 2























.

as well as

L1 = Lc
1 ⊗ I + I ⊗ Lc

1, L2 = Lc
2 ⊗ I + I ⊗ Lc

2,

where ⊗ denotes Kronecker product.



(a) (b)

Figure 4: (a) Uncontaminated image (512 × 512 pixels),

(b) blur- and noise-contaminated image. Error 3%.



Figure 5: PSF (25× 25 pixels) models motion blur.



Restoration of “peppers” by Algorithm 3, µ0 = 1.

Matrix-vector products can be evaluated quickly with the

aid of the FFT.

L ‖xk − xtrue‖2/‖xtrue‖2 # iterations

I 0.10743 7

L1 0.09368 4

L2 0.08516 3



(a) (b)

Figure 6: Restorations determined by Algorithm 3 with

(a) L = I, (b) L = L1.



Figure 7: Restorations determined by Algorithm 3 with

L = L2.



Preconditioning

Tikhonov regularization is closely related to

preconditiing. Let the regularization matrix L be square

and nonsingular. Then Tikhonov regularization in

general form

min
x∈Rn

{‖Ax− b‖22 + µ‖Lx‖22}

easily can be transformed to standard form by letting

x = Ly:

min
y∈Rn

{‖AL−1y − b‖22 + µ‖y‖22}

The matrix A is right-preconditioned by L−1.



When L is not square, we can replace L−1 above by the

A-weighted generalized inverse of L:

L†
A = (I − (A(I − L†L))†A)L†.

Thus, we solve the minimization problem

min
y∈Rn

{‖AL†
Ay − b‖22 + µ‖y‖22}

The matrix A is right-preconditioned by L†
A.

Note: The “preconditioner” should not be an accurate

approximation of A†, because this would result in a large

propagetd error (stemming from the error in b) in the

computed solution.



We conclude that the “preconditioner”

• should approximate A well enough to make it

possible to determine an accurate approximation of

xexact in a solution subspace of low dimension,

• should not approximate A well enough to cause

propagation and amplification of the error in b into

the computed approximation of xexact.

We describe a method by Donatelli and Hanke that

achieves these goals.



The method by Donatelli and Hanke

We would like to compute an approximate solution of the

discrete ill-posed problem

Ax = b,

where the singular values of A ∈ Rn×n “cluster” at the

origin.

The normal equations for Tikhonov regularization

(ATA+ µI)x = AT b,

determine the approximation xµ of xexact, where µ > 0 is

a regularization parameter.



Assume the normal equations are expensive to solve. Let

C ∈ Rn×n approximate A and be such that

(CTC + µI)h = CT b,

is easier to solve.

Donatelli and Hanke proposed the method: Let x(0) ∈ Rn

and repeat

for k = 0, 1, 2, . . . until discrepancy principle satisfied:

1. r(k) = b−Ax(k)

2. h(k) = CT (CCT + µkI)
−1r(k)

3. x(k+1) = x(k) + h(k)

end



Some observations:

• When C = A and

µk = αqk, α > 0, 0 < q < 1, k = 0, 1, 2, . . . ,

the iterations are identical with nonstationary

iterated Tikhonov regularization.

• Iterated Tikhonov is an iterative refinement

procedure. We terminate early due to the

discrepancy principle. This introduces an error.

Replacing A by C introduces another error.



• Convergence analysis of the method requires that for

some 0 < ρ < 1/2,

‖(C − A)x‖2 ≤ ρ‖Ax‖2 ∀x ∈ Rn

This inequality may be difficult to verify. It leads to

that

‖rk − C(xexact − xk)‖2 < (1− ρ)‖rk‖2.

The latter inequality has been verified in image

restoration applications.



In image restoration applications with a space invariant

point spread function

• A is a block-Toeplitz-Toeplitz-block matrix, except

for the boundary conditions that may destroy some

of the structure,

• C is a block-circulant-circulant-block matrix.

This allows fast evaluation of Ax(k) and

CT (CCT + µk)
−1r(k) with the FFT.


