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Lecture 4: Image restoration based on nonconvex

optimization.

Outline of Lecture 4:

• ℓp-ℓq minimization methods

• Choice of solution subspace

• Selection of regularization parameter



The minimization problem

min
x∈Rn

J (x), J (x) =
1

p
‖Ax− b‖pp +

µ

q
‖Φ(x)‖qq ,

where

0 < p, q ≤ 2, µ > 0,

A ∈ Rm×n, b ∈ Rm, x ∈ Rn, Φ : Rn → Rs.

Special case: Tikhonov regularization

p = 2, q = 2, Φ(x) = Lx, L ∈ Rs×n.

Large-scale problems often solved by Krylov subspace

methods.



Applications:

• p = 2, m < n, 0 < q ≤ 1, and Φ = I: Compute sparse

solutions of undetermined linear systems.

• p = 2, 0 < q ≤ 1, Φ = I, and A a sampling operator:

compressed sensing,

• Image restoration: Each element of x represents a

pixel.



ℓq-norms: solid black graph: ℓ0-norm; dotted black

graph: ℓ1-norm; dark gray solid graph: ℓ0.5-norm;

light gray solid graph: ℓ0.1-norm.

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2



Image restoration applications:

• Total variation (TV) regularization when q = 1 and

Φ = ΦTV : Rn → Rn:

‖x‖TV := ‖ΦTV(x)‖1 =
n∑

i=1

‖
(
∇x
)
i
‖2 ,

where
(
∇x
)
i
∈ R2 is the discrete gradient at pixel i.

Gives ℓp-TV restoration:

min
x∈Rn

{
1

p
‖Ax− b‖pp + µ‖x‖TV

}
.

Use p = 2 for additive Gaussian noise, 0 < p ≤ 1 for

impulse noise.



Majorization-minimization (MM) methods

Let G(x) : Rn → R be continuously differentiable. The

function Q(x, v) : Rn ×Rn → R is said to be a quadratic

tangent majorant for G(x) iff for any v ∈ Rn the

following conditions hold:

1. Q(x, v) is quadratic in x,

2. Q(v, v) = G(v),

3. ∇xQ(v, v) = ∇xG(v),

4. Q(x, v) ≥ G(v) ∀ x ∈ Rn.



Quadratic majorization possible only for continuously

differentiable functions. We therefore use smoothed

functions

φz,ε(t) :=
(√

t2 + ε2
)z

with





ε > 0 for 0 < z ≤ 1,

ε = 0 for 1 < z ≤ 2.

Then

φ′
z,ε(t) :=

d

dt
φz,ε(t) = z t

(√
t2 + ε2

)z−2

= z t φz−2,ε(t) .



We consider the minimization problem

min
x∈Rn

Jε(x),

where

Jε(x) :=
1

p

r∑

i=1

φp,ε

(
(Ax− b)i

)
+

µ

q

s∑

j=1

φq,ε

(
(Lx)j

)
.



Proposition: Let φz,ε(t) : R → R+ be the smoothed

penalty function defined above with z ∈ ] 0, 2 ]. Then any

function mz,ε(t, v) : R×R → R+ of the form

mz,ε(t, v) := av (t− bv)
2 + cv

with

av ∈ [ av , +∞[ , av :=
φ′
z,ε(v)

2v
=

z

2
φz−2,ε(v) ,

bv := v −
φ′
z,ε(v)

2av
= v

(
1− av / av

)
,

cv := φz,ε(v)−
(
φ′
z,ε(v)

)2

4av
= φz,ε(v)− v2 av

2 / av ,

is a quadratic tangent majorant for φz,ε(t).



Thus,

mz,ε(v, v) = φz,ε(v) ∀ v ∈ R ,

m′
z,ε(v, v) = φ′

z,ε(v) ∀ v ∈ R ,

mz,ε(t, v) ≥ φz,ε(t) ∀ v ∈ R , ∀ t ∈ R .



Adaptive and fixed quadratic majorants

Let φz,ε(t) be the smoothed penalty function defined

above with z ∈ ] 0, 2 ] and let mz,ε(t, v) be the family of

associated quadratic tangent majorants.

• If for every v ∈ R, the parameter av is chosen as the

lower limit of the admissible interval, i.e., if av := av,

then the quadratic majorant takes the adaptive form:

m(A)
z,ε (t, v) = avt

2 + φz,ε(v)− v2av

=
z

2
φz−2,ε(v)t

2 + φz,ε(v)− v2
z

2
, φz−2,ε(v)

︸ ︷︷ ︸
independent of t

.



• If for every v ∈ R the parameter av is chosen

independently of v as follows

av := āz,ε, āz,ε := max
v∈R

av = max
v∈R

(
φ′
z,ε(v)

2v

)
=

z

2
εz−2,

then the quadratic majorant takes the fixed form:

m(F )
z,ε (t, v) = āz,ε

(
t− v

(
1− av/āz,ε

))2

+ φz,ε(v)− v2av
2/āz,ε

=
z

2

(
εz−2t2 − 2v

(
εz−2 − φz−2,ε(v)

)
t
)

+ φz,ε(v)− v2
z

2

(
2φz−2,ε(v)− εz−2

)

︸ ︷︷ ︸
independent of t

.



Adaptive quadratic majorization

Replace the functions φp,ε and φq,ε in Jε by associated

adaptive quadratic majorants at v
(k)
i and u

(k)
j . Gives

adaptive quadratic majorant for Jε(x) at x
(k):

Q(A)(x, x(k)) =
1

2

r∑

i=1

φp−2,ε

(
v
(k)
i

)
(Ax− b)2i

+
µ

2

s∑

j=1

φq−2,ε

(
u
(k)
j

)
(Lx)2j + c.

The constant c is made up of terms that are independent

of x.



Define vectors w
(k)
fid ∈ Rr and w

(k)
reg ∈ Rs of majorization

weights for the fidelity and regularization terms:

w
(k)
fid = φp−2,ε

(
v(k)
)
=
((

v(k)
)2

+ ε2
)p/2−1

,

w(k)
reg = φq−2,ε

(
u(k)
)
=
((

u(k)
)2

+ ε2
)q/2−1

and introduce the diagonal matrices

W
(k)
fid = diag

(
w

(k)
fid

)
∈ Rr×r,

W (k)
reg = diag

(
w(k)

reg

)
∈ Rs×s.



Then

Q(A)(x, x(k)) =
1

2

∥∥∥∥
(
W

(k)
fid

)1/2
(Ax− b)

∥∥∥∥
2

2

+
µ

2

∥∥∥
(
W (k)

reg

)1/2
Lx
∥∥∥
2

2
+ c.



Fixed quadratic majorization

Replace the functions φp,ε and φq,ε in Jε by associated

fixed quadratic majorants at v
(k)
i and u

(k)
j . Gives fixed

quadratic majorant for Jε(x) at x
(k):

Q(F )(x, x(k)) =
εp−2

2

r
∑

i=1

[

(Ax− b)2i − 2v
(k)
i

(

1−
φp−2,ε

(

v
(k)
i

)

εp−2

)

(Ax− b)i

]

+
µεq−2

2

s
∑

j=1



(Lx)2j − 2u
(k)
j



1−
φq−2,ε

(

u
(k)
j

)

εq−2



 (Lx)j



+ c.

Terms independent of x make up the constant c.



Define vectors w
(k)
fid ∈ Rr and w

(k)
reg ∈ Rs of majorization

weights for the fidelity and regularization terms:

Component-wise

w
(k)
fid = v(k)

(
1− φp−2,ε

(
v(k)
)

εp−2

)
,

w(k)
reg = u(k)

(
1− φq−2,ε

(
u(k)
)

εq−2

)
.



The fixed quadratic majorant can be expressed in the

compact form:

Q(F )(x, x(k)) =
εp−2

2

(
‖Ax− b‖22 − 2

〈
w

(k)
fid , Ax

〉)

+
µεq−2

2

(
‖Lx‖22 − 2

〈
w(k)

reg, Lx
〉)

+ c.



The minimization steps in the kth iteration of the
adaptive MM approach can be written as

x(k+1) = arg min
x∈Rn

[∥∥∥∥
(
W

(k)
fid

)1/2
(Ax− b)

∥∥∥∥
2

2

+ µ

∥∥∥∥
(
W (k)

reg

)1/2
Lx

∥∥∥∥
2

2

]

and of the fixed MM approach as

x(k+1) = arg min
x∈Rn

[
‖Ax− b‖22−2

〈
w

(k)
fid , Ax

〉
+η
(
‖Lx‖22−2

〈
w(k)

reg, Lx
〉)]

.

Terms independent of x are omitted and η := µ εq−2

εp−2 .



Define the n× n matrices

T (A) (Wfid,Wreg) := ATWfidA + µ LTWregL,

T (F ) := ATA + η LTL .

The normal equations associated with the adaptive and

fixed quadratic minimization problems can be written

T (A)
(
W

(k)
fid ,W (k)

reg

)
x = ATW

(k)
fid b ,

T (F ) x = AT
(
b+ w

(k)
fid

)
+ η LTw(k)

reg .



The normal equations for the adaptive approach have a

unique solution if

Ker
(
ATW

(k)
fid A

)
∩ Ker

(
LTW (k)

regL
)

= {0} ∀k,

and the normal equations for the fixed approach have a

unique solution if

Ker
(
ATA

)
∩ Ker

(
LTL

)
= {0} ,



The generalized Krylov subspace (GKS) method

Let the columns of Vk ∈ Rn×k form an orthonormal basis

for the (generalized Krylov) solution subspace.

Adaptive minimization problem:

min
y∈Rk+l

∥∥∥∥∥

[ (
Wfid

)1/2
AVk

µ1/2
(
Wreg

)1/2
LVk

]
y −

[ (
Wfid

)1/2
b

0

] ∥∥∥∥∥

2

2

.

Fixed minimization problem:

min
y∈Rk+l

∥∥∥∥∥

[
AVk

η1/2LVk

]
y −

[
b+ w

(k)
fid

η1/2w
(k)
reg

] ∥∥∥∥∥

2

2

.

Solution y(k+1). Then x(k+1) := Vky
(k+1).



The GKS method for the fixed minimization problem

Let Vk ∈ Rn×d, d = k + l ≪ n. Define the QR

factorizations

AVk = QARA with QA ∈ Rr×d, RA ∈ Rd×d ,

LVk = QLRL with QL ∈ Rs×d , RL ∈ Rd×d .

Substituting factorizations into the minimization problem

gives small problem:

min
y∈Rk+l

∥∥∥∥∥

[
RA

η1/2RL

]
y −

[
QT

A(b+ w
(k)
fid )

η1/2QT
Lw

(k)
reg

] ∥∥∥∥∥

2

2

.



Residual vector for the normal equations:

r(k+1) = T (F ) x(k+1) − AT
(
b+ w

(k)
fid

)
− ηLTw(k)

reg

= AT
(
AVky

(k+1) − b− w
(k)
fid

)
+ ηLT

(
LVky

(k+1) − w(k)
reg

)
.

The subspace Vk is expanded to Vk+1 by adding the new

basis vector

vnew :=
r(k+1)

‖r(k+1)‖2
, Vk+1 := [Vk, vnew] .

To enforce orthogonality in the presence of round-off

errors, vnew is reorthogonalized against Vk.



Update the QR factorizations

A[Vk, vnew] = [QA, q̃A,k+1]


 RA rK,k+1

0 τK,k+1


 ,

L[Vk, vnew] = [QL, q̃L,k+1]


 RL rL,k+1

0 τL,k+1


 .



The GKS method for the adaptive minimization problem

Let Vk ∈ Rn×d, d = k + l ≪ n. Compute the QR

factorizations

W
1/2
fid AVk = QARA with QA ∈ Rr×d, RA ∈ Rd×d ,

W 1/2
reg LVk = QLRL with QL ∈ Rs×d , RL ∈ Rd×d .

Substituting into minimization problem gives small

problem

min
y∈Rk+l

∥∥∥∥∥

[
RA

µ1/2RL

]
y −

[
QT

AW
1/2
fid b

0

] ∥∥∥∥∥

2

2

.



Residual vector for the normal equations:

r(k+1) = T
(
Wfid,Wreg

)
x(k+1) − ATWfidb

= ATWfid

(
AVky

(k+1) − b
)
+ µLTWreg

(
LVky

(k+1)
)
.

is normalized, reorthogonalized, and appended to the

matrix Vk.



Convergence analysis for the MM-GKS methods

The MM-GKS approach can be written in the form

x(k+1) :=





arg min
x∈Vk

Q(x, x(k)) for k = 0, 1, . . . , n− l − 1,

arg min
x∈Rn

Q(x, x(k)) for k = n− l, n− l + 1, . . . ,

where

• l ≥ 1 is the dimension of the user-specified initial

subspace V0,

• Vk is the generalized Krylov subspace used at

iteration k,

• Q(x, x(k)) is either Q(A)(x, x(k)) or Q(F )(x, x(k)).



Theorem: Let each linearized minimization problem have

a unique solution. Then, for any initial guess x(0) ∈ Rn,

the sequence {Jε(x
(k))}k≥0 is monotonically

non-increasing and convergent.



Theorem: Let each linearized minimization problem have

a unique solution. Then, for any initial guess x(0) ∈ Rn,

the sequence {x(k)}k≥1 converges to a stationary point of

Jε(x). Thus,

a. lim
k→∞

∥∥ x(k+1) − x(k)
∥∥
2
= 0,

b. lim
k→∞

∇xJε

(
x(k)
)
= 0.



Corollary: If in addition p > 1 and q > 1, then for any

initial guess x(0) ∈ Rn, the sequence
{
x(k)
}
k≥0

converges

towards the unique global minimizer of the smoothed

ℓp-ℓq functional.



Determining the regularization parameter for p = 2 by

the discrepancy principle

Assume that a bound ‖b− bexact‖2 ≤ δ is known.

• Use a monotonically decreasing sequence of

regularization parameter values µ = µk. Let x
(k) be

the solution of the minimization problem with

µ = µk and assume that the matrix A is nonsingular.

Terminate the above iterations with the discrepancy

principle, i.e., as soon as ‖Ax(k) − b‖2 ≤ δ, Then

lim sup
δց0

‖x(k) − xexact‖2 = 0.



• Choose µ = µk in each iteration so that

‖Ax(k) − b‖2 = δ. Then there is a subsequence x(kj),

j = 1, 2, . . . , of computed solutions such that

lim sup
δց0

‖x(kj) − xexact‖2 = 0.



Determining the regularization parameter by (standard)

cross validation

Consider for simplicity Tikhonov regularization in

standard form

min
x∈Rn

{‖Ax− b‖22 + µ‖x‖22}.

The CV method partitions b into two subsets (several

times): the training set and the testing set.

• The training set is used for solving the problem (with

the rows of the testing set removed) for different

regularization parameters.



• The testing set is used to validate the computed

solution and select a suitable regularization

parameter.

Assume first that the testing set consists of the first d

rows of A and b. Let

b̃ = [bd+1, bd+2, . . . , bm]
T ,

Ã =




Ad+1,1 Ad+1,2 . . . Ad+1,n

Ad+2,1 Ad+2,2 . . . Ad+2,n

...
... . . .

...

Am,1 Am,2 . . . Am,n



.



Let µ1 > µ2 > . . . > µl > 0 be regularization parameters,

say,

µj+1 = µj/10, j = 1, 2, . . . , l − 1.

Solve Tikhonov minimization problem with A, b, and µ

replaced by Ã, b̃, and µj, repectively. Gives solutions xµj
,

j = 1, 2, . . . , l.

Validate xµj
with the testing set, i.e., compute

ρj =

√√√√
d∑

i=1

((
Axµj

)
i
− bi

)2
, j = 1, 2, . . . , l.



Let 1 ≤ j∗ ≤ l be such that

ρj∗ ≤ ρj, j = 1, 2, . . . , l.

Let µ = µj∗ .

Repeat for new training set obtained by removing d other

rows of A and d. In the computed examples d = l = 10

and 10 training sets.

Choose the regularization parameter to be the average of

the µ-values computed.



Algorithm

for k = 1, 2, . . . ,K

Ã and b̃ versions of A and b, in which the kth set of d

consecutive rows have been removed

for j = 1, 2, . . . , l

Let x
(k)
µj be Tikhonov solution with A, b, and µ

replaced by Ã, b̃, and µj

r
(k)
j =

√
∑kd

i=d(k−1)+1

((
Ax

(k)
µj

)

i
− bi

)2

j∗ = argmin1≤j≤l{r(k)j }
µ(k) = µj∗

end

µ = 1
K

∑K
k=1 µ

(k)



Determining the regularization parameter by modified

cross validation

Compare predictions of computed solutions:

• Let I1 and I2 be distinct sets of d distinct random

integers in [1, n].

• For i = 1, 2, let Ãi and b̃i be obtained by removing

rows with indices in Ii from A and b.

• Let µ1 > µ2 > . . . > µl > 0 be regularization

parameters.



• For i = 1, 2, let x
(i)
µj solve the Tikhonov regularization

problem A, b, and µ replaced by Ãi, b̃, and µj.

• Compute

∆xj = ‖x(1)
µj

− x(2)
µj
‖2, j = 1, 2, . . . , l,

• Let µ(k) minimize ∆xj over j = 1, 2, . . . , l.

Repeat for several sets I1 and I2. Let µ be the average of

the µ(k) computed.



The IRN method

Method proposed by Rodriguez and Wohlberg. Apply

the conjugate gradient method to solve the sequence

normal equations determined by adaptive approach.



Computed examples

We report the Signal-to-Noise ratio (SNR):

SNR(x∗, x̄) := 10 log10
‖x̄− E(x̄)‖22
‖x∗ − x̄‖22

(dB) ,

where E(x̄) denotes the mean gray level of the

uncontaminated image x̄.

We use the initial subspace

V0 = span{AT b}. (l = 1)



Example: Cameraman image: 512× 512 pixels.

Original image



Contaminated image, SNR=-0.80

20% salt-and-pepper noise, Gaussian blur.



Restored image by ℓ1-ℓ1 TV minimization, SNR=13.22.



Restored image by ℓ0.7-ℓ1.0 TV minimization, SNR=15.33.



blur noise efficiency: time (iterations, MVPs) accuracy: SNR

band σ % µ IRN AMM FMM IRN AMM FMM

ℓ1-ℓ1

10 0.004 303.12 163.08 42.83 13.00 12.99 12.98

(39,6182) (177,708) (202,808)

9 2.5 20 0.005 291.40 155.69 44.63 12.01 12.01 12.05

(42,5892) (174,696) (203,812)

30 0.020 180.29 65.89 29.23 11.64 11.65 11.69

(55,3586) (123,492) (162,648)

ℓ0.7-ℓ1

10 0.004 497.87 427.96 70.49 15.20 15.19 15.15

(34,10292) (256,1024) (274,1096)

9 2.5 20 0.006 430.04 300.07 69.08 14.29 14.28 14.26

(37,8838) (224,896) (265,1060)

30 0.010 365.49 224.34 67.20 13.47 13.47 13.43

(41,7450) (201,804) (266,1064)



Convergence of functional and difference between

consecutive iterates.

0 100 200 300 400 500
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Application of wavelets

Compute a sparse solution by using a two-level framelet

analysis operator as regularization operator L. Framelets

are extensions of wavelets.

Let A ∈ Rr×n with n ≤ r. The set of the rows of A is a

tight frame for Rn if

‖x‖22 =
r∑

j=1

yTj x ∀ x ∈ Rn,

where yj ∈ Rn is the jth row of A (written as a column

vector), i.e., A = [y1, . . . , yr]
T . The matrix A is referred

to as an analysis operator and A
T as a synthesis operator.



Tight frames determined by B-splines: Made up of a

low-pass filter W0 and two high-pass filters W1 and W2

defined by the masks

w(0) =
1

2
(1, 2, 1) , w(1) =

√
2

4
(1, 0, −1) , w(2) =

1

4
(−1, 2, −1) .

These masks and reflective boundary conditions yield
the matrices

W0 =
1

4




3 1 0 . . . 0

1 2 1

. . .
. . .

. . .

1 2 1

0 . . . 0 1 3




, W1 =

√
2

4




−1 1 0 . . . 0

−1 0 1

. . .
. . .

. . .

−1 0 1

0 . . . 0 −1 1




,



W2 =
1

4




1 −1 0 . . . 0

−1 2 −1

. . .
. . .

. . .

−1 2 −1

0 . . . 0 1 1




.

This gives the analysis operator for problems in 1D:

A =




W0

W1

W2




with A
T
A = I.



In 2D: Let Wij = Wi ⊗Wj and define

A =




W00

W01

...

W22



.



Original image, 246× 246 pixels.



PSF, 9× 9 pixels.



Image contaminated by blur and 1% white Gaussian

noise.



Restored image by FMM-GKS, best regularization

parameter.



Restored image by FMM-GKS, regularization parameter

determined by monotonically decreasing sequence.



Restored image by FMM-GKS, regularization parameter

determined by discrepancy principle.



Restoration of clock image.

Method relative error # iterations

MM-GKS-R 0.032887 29

MM-GKS-MD 0.036663 5

MM-GKS-DP 0.032828 28



New PSF, 29× 29 pixels.



Image contaminated by blur and 10% salt-and pepper

noise.



Restoration, optimal regularization parameter:

PSNR=33.81.



Restoration, regularization parameter by cross validation:

PSNR=29.51.



Restoration, regularization parameter by modified cross

validation: PSNR=33.14.



PSNR vs. the regularization parameter: star=optimal,

square=MCV, circle=CV.

10-4 10-3 10-2 10-1 100

-60

-50

-40

-30

-20

-10

0

10

20
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250× 250 pixels

Original image



Out-of-focus PSF, 26× 26 pixels



Blurred and noisy image, 30% salt-and-pepper noise



Restored image, optimal µ, p = 0.8, q = 0.5,

PSNR= 26.15



Restored image, CV µ, p = 0.8, q = 0.5, PSNR= 25.27



Restored image, MCV µ, p = 0.8, q = 0.5, PSNR= 26.15



247× 247 pixels

Original image



Motion PSF, 27× 27 pixels



Blurred and noisy image, 10% salt-and-pepper noise and

white Gaussian noise



Restored image, optimal µ, p = 0.8, q = 0.1,

PSNR= 26.58



Restored image, CV µ, p = 0.8, q = 0.1, PSNR= 25.49



Restored image, MCV µ, p = 0.8, q = 0.1, PSNR= 25.74



234× 182 pixels

Original image



Motion PSF, 17× 17 pixels



Blurred and noisy image, 20% salt-and-pepper noise and

1% Gaussian noise



Restored image, CV, p = 0.8, q = 0.1, relative

error= 0.0740



Restored image, MCV, p = 0.8, q = 0.1, relative

error= 0.0689



Grazie 10
3


