Iterative methods for Image Processing

Lothar Reichel

Como, May 2018.

Lecture 4: Image restoration based on nonconvex optimization.

Outline of Lecture 4:

- $\ell_{p}-\ell_{q}$ minimization methods
- Choice of solution subspace
- Selection of regularization parameter

The minimization problem

$$
\min _{x \in \mathbf{R}^{n}} \mathcal{J}(x), \quad \mathcal{J}(x)=\frac{1}{p}\|A x-b\|_{p}^{p}+\frac{\mu}{q}\|\Phi(x)\|_{q}^{q}
$$

where

$$
\begin{aligned}
& 0<p, q \leq 2, \quad \mu>0 \\
& A \in \mathbf{R}^{m \times n}, \quad b \in \mathbf{R}^{m}, \quad x \in \mathbf{R}^{n}, \quad \Phi: \mathbf{R}^{n} \rightarrow \mathbf{R}^{s} .
\end{aligned}
$$

Special case: Tikhonov regularization

$$
p=2, \quad q=2, \quad \Phi(x)=L x, \quad L \in \mathbf{R}^{s \times n} .
$$

Large-scale problems often solved by Krylov subspace methods.

Applications:

- $p=2, m<n, 0<q \leq 1$, and $\Phi=I$: Compute sparse solutions of undetermined linear systems.
- $p=2,0<q \leq 1, \Phi=I$, and A a sampling operator: compressed sensing,
- Image restoration: Each element of x represents a pixel.
ℓ^{q}-norms: solid black graph: ℓ^{0}-norm; dotted black graph: ℓ^{1}-norm; dark gray solid graph: $\ell^{0.5}$-norm; light gray solid graph: $\ell^{0.1}$-norm.

Image restoration applications:

- Total variation (TV) regularization when $q=1$ and $\Phi=\Phi_{T V}: \mathbf{R}^{n} \rightarrow \mathbf{R}^{n}:$

$$
\|x\|_{\mathrm{TV}}:=\left\|\Phi_{\mathrm{TV}}(x)\right\|_{1}=\sum_{i=1}^{n}\left\|(\nabla x)_{i}\right\|_{2}
$$

where $(\nabla x)_{i} \in \mathbf{R}^{2}$ is the discrete gradient at pixel i.

Gives ℓ_{p}-TV restoration:

$$
\min _{x \in \mathbf{R}^{n}}\left\{\frac{1}{p}\|A x-b\|_{p}^{p}+\mu\|x\|_{\mathrm{TV}}\right\} .
$$

Use $p=2$ for additive Gaussian noise, $0<p \leq 1$ for impulse noise.

Majorization-minimization (MM) methods

Let $G(x): \mathcal{R}^{n} \rightarrow \mathcal{R}$ be continuously differentiable. The function $Q(x, v): \mathcal{R}^{n} \times \mathcal{R}^{n} \rightarrow \mathcal{R}$ is said to be a quadratic tangent majorant for $G(x)$ iff for any $v \in \mathcal{R}^{n}$ the following conditions hold:

1. $Q(x, v)$ is quadratic in x,
2. $Q(v, v)=G(v)$,
3. $\nabla_{x} Q(v, v)=\nabla_{x} G(v)$,
4. $Q(x, v) \geq G(v) \quad \forall x \in \mathcal{R}^{n}$.

Quadratic majorization possible only for continuously differentiable functions. We therefore use smoothed functions
$\phi_{z, \varepsilon}(t):=\left(\sqrt{t^{2}+\varepsilon^{2}}\right)^{z}$ with $\left\{\begin{array}{lll}\varepsilon>0 & \text { for } & 0<z \leq 1, \\ \varepsilon=0 & \text { for } & 1<z \leq 2 .\end{array}\right.$
Then

$$
\phi_{z, \varepsilon}^{\prime}(t):=\frac{d}{d t} \phi_{z, \varepsilon}(t)=z t\left(\sqrt{t^{2}+\varepsilon^{2}}\right)^{z-2}=z t \phi_{z-2, \varepsilon}(t) .
$$

We consider the minimization problem

$$
\min _{x \in \mathbf{R}^{n}} \mathcal{J}_{\varepsilon}(x)
$$

where

$$
\mathcal{J}_{\varepsilon}(x):=\frac{1}{p} \sum_{i=1}^{r} \phi_{p, \varepsilon}\left((A x-b)_{i}\right)+\frac{\mu}{q} \sum_{j=1}^{s} \phi_{q, \varepsilon}\left((L x)_{j}\right)
$$

Proposition: Let $\phi_{z, \varepsilon}(t): \mathbf{R} \rightarrow \mathbf{R}_{+}$be the smoothed penalty function defined above with $z \in] 0,2]$. Then any function $m_{z, \varepsilon}(t, v): \mathbf{R} \times \mathbf{R} \rightarrow \mathbf{R}_{+}$of the form

$$
m_{z, \varepsilon}(t, v):=a_{v}\left(t-b_{v}\right)^{2}+c_{v}
$$

with

$$
\begin{aligned}
& a_{v} \in\left[\underline{a_{v}},+\infty\left[, \quad \underline{a_{v}}:=\frac{\phi_{z, \varepsilon}^{\prime}(v)}{2 v}=\frac{z}{2} \phi_{z-2, \varepsilon}(v),\right.\right. \\
& b_{v}:=v-\frac{\phi_{z, \varepsilon}^{\prime}(v)}{2 a_{v}}=v\left(1-\underline{a_{v}} / a_{v}\right), \\
& c_{v}:=\phi_{z, \varepsilon}(v)-\frac{\left(\phi_{z, \varepsilon}^{\prime}(v)\right)^{2}}{4 a_{v}}=\phi_{z, \varepsilon}(v)-v^{2}{\underline{a_{v}}}^{2} / a_{v},
\end{aligned}
$$

is a quadratic tangent majorant for $\phi_{z, \varepsilon}(t)$.

Thus,

$$
\begin{aligned}
m_{z, \varepsilon}(v, v) & =\phi_{z, \varepsilon}(v) \quad \forall v \in \mathbf{R}, \\
m_{z, \varepsilon}^{\prime}(v, v) & =\phi_{z, \varepsilon}^{\prime}(v) \quad \forall v \in \mathbf{R}, \\
m_{z, \varepsilon}(t, v) & \geq \phi_{z, \varepsilon}(t) \quad \forall v \in \mathbf{R}, \quad \forall t \in \mathbf{R} .
\end{aligned}
$$

Adaptive and fixed quadratic majorants

Let $\phi_{z, \varepsilon}(t)$ be the smoothed penalty function defined above with $z \in] 0,2]$ and let $m_{z, \varepsilon}(t, v)$ be the family of associated quadratic tangent majorants.

- If for every $v \in \mathbf{R}$, the parameter a_{v} is chosen as the lower limit of the admissible interval, i.e., if $a_{v}:=\underline{a_{v}}$, then the quadratic majorant takes the adaptive form:

$$
\begin{aligned}
m_{z, \varepsilon}^{(A)}(t, v) & =\frac{a_{v} t^{2}}{}+\phi_{z, \varepsilon}(v)-v^{2} \underline{a_{v}} \\
& =\frac{z}{2} \phi_{z-2, \varepsilon}(v) t^{2}+\underbrace{\phi_{z, \varepsilon}(v)-v^{2} \frac{z}{2}, \phi_{z-2, \varepsilon}(v)}_{\text {independent of } t}
\end{aligned}
$$

- If for every $v \in \mathbf{R}$ the parameter a_{v} is chosen independently of v as follows

$$
a_{v}:=\bar{a}_{z, \varepsilon}, \quad \bar{a}_{z, \varepsilon}:=\max _{v \in \mathbf{R}} \frac{a_{v}}{}=\max _{v \in \mathbf{R}}\left(\frac{\phi_{z, \varepsilon}^{\prime}(v)}{2 v}\right)=\frac{z}{2} \varepsilon^{z-2}
$$

then the quadratic majorant takes the fixed form:

$$
\begin{aligned}
m_{z, \varepsilon}^{(F)}(t, v) & =\bar{a}_{z, \varepsilon}\left(t-v\left(1-a_{v} / \bar{a}_{z, \varepsilon}\right)\right)^{2} \\
& +\phi_{z, \varepsilon}(v)-v^{2} \underline{a_{v}}{ }^{2} / \bar{a}_{z, \varepsilon} \\
& =\underbrace{\frac{z}{2}\left(\varepsilon^{z-2} t^{2}-2 v\left(\varepsilon^{z-2}-\phi_{z-2, \varepsilon}(v)\right) t\right)}_{\text {independent of } t} \\
& +\underbrace{\phi_{z}(v)-v^{2} \frac{z}{2}\left(2 \phi_{z-2, \varepsilon}(v)-\varepsilon^{z-2}\right)}_{z, \varepsilon}
\end{aligned}
$$

Adaptive quadratic majorization
Replace the functions $\phi_{p, \varepsilon}$ and $\phi_{q, \varepsilon}$ in $\mathcal{J}_{\varepsilon}$ by associated adaptive quadratic majorants at $v_{i}^{(k)}$ and $u_{j}^{(k)}$. Gives adaptive quadratic majorant for $\mathcal{J}_{\varepsilon}(x)$ at $x^{(k)}$:

$$
\begin{aligned}
\mathcal{Q}^{(A)}\left(x, x^{(k)}\right) & =\frac{1}{2} \sum_{i=1}^{r} \phi_{p-2, \varepsilon}\left(v_{i}^{(k)}\right)(A x-b)_{i}^{2} \\
& +\frac{\mu}{2} \sum_{j=1}^{s} \phi_{q-2, \varepsilon}\left(u_{j}^{(k)}\right)(L x)_{j}^{2}+c .
\end{aligned}
$$

The constant c is made up of terms that are independent of x.

Define vectors $w_{\mathrm{fid}}^{(k)} \in \mathbf{R}^{r}$ and $w_{\mathrm{reg}}^{(k)} \in \mathbf{R}^{s}$ of majorization weights for the fidelity and regularization terms:

$$
\begin{aligned}
& w_{\mathrm{fid}}^{(k)}=\phi_{p-2, \varepsilon}\left(v^{(k)}\right)=\left(\left(v^{(k)}\right)^{2}+\varepsilon^{2}\right)^{p / 2-1} \\
& w_{\mathrm{reg}}^{(k)}=\phi_{q-2, \varepsilon}\left(u^{(k)}\right)=\left(\left(u^{(k)}\right)^{2}+\varepsilon^{2}\right)^{q / 2-1}
\end{aligned}
$$

and introduce the diagonal matrices

$$
\begin{aligned}
& W_{\mathrm{fid}}^{(k)}=\operatorname{diag}\left(w_{\mathrm{fid}}^{(k)}\right) \in \mathbf{R}^{r \times r}, \\
& W_{\text {reg }}^{(k)}=\operatorname{diag}\left(w_{\text {reg }}^{(k)}\right) \in \mathbf{R}^{s \times s} .
\end{aligned}
$$

Then

$$
\begin{aligned}
\mathcal{Q}^{(A)}\left(x, x^{(k)}\right) & =\frac{1}{2}\left\|\left(W_{\text {fid }}^{(k)}\right)^{1 / 2}(A x-b)\right\|_{2}^{2} \\
& +\frac{\mu}{2}\left\|\left(W_{\text {reg }}^{(k)}\right)^{1 / 2} L x\right\|_{2}^{2}+c .
\end{aligned}
$$

Fixed quadratic majorization
Replace the functions $\phi_{p, \varepsilon}$ and $\phi_{q, \varepsilon}$ in $\mathcal{J}_{\varepsilon}$ by associated fixed quadratic majorants at $v_{i}^{(k)}$ and $u_{j}^{(k)}$. Gives fixed quadratic majorant for $\mathcal{J}_{\mathcal{\varepsilon}}(x)$ at $x^{(k)}$:

$$
\begin{aligned}
\mathcal{Q}^{(F)}\left(x, x^{(k)}\right) & =\frac{\varepsilon^{p-2}}{2} \sum_{i=1}^{r}\left[(A x-b)_{i}^{2}-2 v_{i}^{(k)}\left(1-\frac{\phi_{p-2, \varepsilon}\left(v_{i}^{(k)}\right)}{\varepsilon^{p-2}}\right)(A x-b)_{i}\right] \\
& +\frac{\mu \varepsilon^{q-2}}{2} \sum_{j=1}^{s}\left[(L x)_{j}^{2}-2 u_{j}^{(k)}\left(1-\frac{\phi_{q-2, \varepsilon}\left(u_{j}^{(k)}\right)}{\varepsilon^{q-2}}\right)(L x)_{j}\right]+c .
\end{aligned}
$$

Terms independent of x make up the constant c.

Define vectors $w_{\mathrm{fid}}^{(k)} \in \mathbf{R}^{r}$ and $w_{\mathrm{reg}}^{(k)} \in \mathbf{R}^{s}$ of majorization weights for the fidelity and regularization terms:
Component-wise

$$
\begin{aligned}
& w_{\mathrm{fid}}^{(k)}=v^{(k)}\left(1-\frac{\phi_{p-2, \varepsilon}\left(v^{(k)}\right)}{\varepsilon^{p-2}}\right) \\
& w_{\mathrm{reg}}^{(k)}=u^{(k)}\left(1-\frac{\phi_{q-2, \varepsilon}\left(u^{(k)}\right)}{\varepsilon^{q-2}}\right)
\end{aligned}
$$

The fixed quadratic majorant can be expressed in the compact form:

$$
\begin{aligned}
\mathcal{Q}^{(F)}\left(x, x^{(k)}\right) & =\frac{\varepsilon^{p-2}}{2}\left(\|A x-b\|_{2}^{2}-2\left\langle w_{\text {fid }}^{(k)}, A x\right\rangle\right) \\
& +\frac{\mu \varepsilon^{q-2}}{2}\left(\|L x\|_{2}^{2}-2\left\langle w_{\text {reg }}^{(k)}, L x\right\rangle\right)+c .
\end{aligned}
$$

The minimization steps in the k th iteration of the adaptive MM approach can be written as

$$
x^{(k+1)}=\arg \min _{x \in \mathbf{R}^{n}}\left[\left\|\left(W_{\text {fid }}^{(k)}\right)^{1 / 2}(A x-b)\right\|_{2}^{2}+\mu\left\|\left(W_{\text {reg }}^{(k)}\right)^{1 / 2} L x\right\|_{2}^{2}\right]
$$

and of the fixed MM approach as
$x^{(k+1)}=\arg \min _{x \in \mathbf{R}^{n}}\left[\|A x-b\|_{2}^{2}-2\left\langle w_{\text {fid }}^{(k)}, A x\right\rangle+\eta\left(\|L x\|_{2}^{2}-2\left\langle w_{\text {reg }}^{(k)}, L x\right\rangle\right)\right]$.

Terms independent of x are omitted and $\eta:=\mu \frac{\varepsilon^{q-2}}{\varepsilon^{p-2}}$.

Define the $n \times n$ matrices

$$
\begin{aligned}
T^{(A)}\left(W_{\mathrm{fid}}, W_{\mathrm{reg}}\right) & :=A^{T} W_{\mathrm{fid}} A+\mu L^{T} W_{\mathrm{reg}} L, \\
T^{(F)} & :=A^{T} A+\eta L^{T} L
\end{aligned}
$$

The normal equations associated with the adaptive and fixed quadratic minimization problems can be written

$$
\begin{aligned}
T^{(A)}\left(W_{\text {fid }}^{(k)}, W_{\text {reg }}^{(k)}\right) x & =A^{T} W_{\text {fid }}^{(k)} b, \\
T^{(F)} x & =A^{T}\left(b+w_{\text {fid }}^{(k)}\right)+\eta L^{T} w_{\text {reg }}^{(k)} .
\end{aligned}
$$

The normal equations for the adaptive approach have a unique solution if

$$
\operatorname{Ker}\left(A^{T} W_{\text {fid }}^{(k)} A\right) \cap \operatorname{Ker}\left(L^{T} W_{\text {reg }}^{(k)} L\right)=\{0\} \quad \forall k,
$$

and the normal equations for the fixed approach have a unique solution if

$$
\operatorname{Ker}\left(A^{T} A\right) \cap \operatorname{Ker}\left(L^{T} L\right)=\{0\}
$$

The generalized Krylov subspace (GKS) method
Let the columns of $V_{k} \in \mathbf{R}^{n \times k}$ form an orthonormal basis for the (generalized Krylov) solution subspace.

Adaptive minimization problem:

$$
\min _{y \in \mathbf{R}^{k+l}}\left\|\left[\begin{array}{c}
\left(W_{\mathrm{fid}}\right)^{1 / 2} A V_{k} \\
\mu^{1 / 2}\left(W_{\mathrm{reg}}\right)^{1 / 2} L V_{k}
\end{array}\right] y-\left[\begin{array}{c}
\left(W_{\mathrm{fid}}\right)^{1 / 2} b \\
0
\end{array}\right]\right\|_{2}^{2} .
$$

Fixed minimization problem:

$$
\min _{y \in \mathbf{R}^{k+l}}\left\|\left[\begin{array}{c}
A V_{k} \\
\eta^{1 / 2} L V_{k}
\end{array}\right] y-\left[\begin{array}{c}
b+w_{\mathrm{fid}}^{(k)} \\
\eta^{1 / 2} w_{\mathrm{reg}}^{(k)}
\end{array}\right]\right\|_{2}^{2} .
$$

Solution $y^{(k+1)}$. Then $x^{(k+1)}:=V_{k} y^{(k+1)}$.

The GKS method for the fixed minimization problem
Let $V_{k} \in \mathbf{R}^{n \times d}, d=k+l \ll n$. Define the QR
factorizations

$$
\begin{aligned}
A V_{k} & =Q_{A} R_{A} \quad \text { with } \quad Q_{A} \in \mathbf{R}^{r \times d}, \quad R_{A} \in \mathbf{R}^{d \times d} \\
L V_{k} & =Q_{L} R_{L} \quad \text { with } \quad Q_{L} \in \mathbf{R}^{s \times d}, \quad R_{L} \in \mathbf{R}^{d \times d}
\end{aligned}
$$

Substituting factorizations into the minimization problem gives small problem:

$$
\min _{y \in \mathbf{R}^{k+l}}\left\|\left[\begin{array}{c}
R_{A} \\
\eta^{1 / 2} R_{L}
\end{array}\right] y-\left[\begin{array}{c}
Q_{A}^{T}\left(b+w_{\mathrm{fid}}^{(k)}\right) \\
\eta^{1 / 2} Q_{L}^{T} w_{\mathrm{reg}}^{(k)}
\end{array}\right]\right\|_{2}^{2} .
$$

Residual vector for the normal equations:

$$
\begin{aligned}
r^{(k+1)} & =T^{(F)} x^{(k+1)}-A^{T}\left(b+w_{\mathrm{fid}}^{(k)}\right)-\eta L^{T} w_{\mathrm{reg}}^{(k)} \\
& =A^{T}\left(A V_{k} y^{(k+1)}-b-w_{\mathrm{fid}}^{(k)}\right)+\eta L^{T}\left(L V_{k} y^{(k+1)}-w_{\mathrm{reg}}^{(k)}\right)
\end{aligned}
$$

The subspace \mathcal{V}_{k} is expanded to \mathcal{V}_{k+1} by adding the new basis vector

$$
v_{\text {new }}:=\frac{r^{(k+1)}}{\left\|r^{(k+1)}\right\|_{2}}, \quad V_{k+1}:=\left[V_{k}, v_{\text {new }}\right]
$$

To enforce orthogonality in the presence of round-off errors, $v_{\text {new }}$ is reorthogonalized against V_{k}.

Update the QR factorizations

$$
\begin{aligned}
& A\left[V_{k}, v_{\text {new }}\right]=\left[Q_{A}, \tilde{q}_{A, k+1}\right]\left[\begin{array}{cc}
R_{A} & r_{K, k+1} \\
0 & \tau_{K, k+1}
\end{array}\right], \\
& L\left[V_{k}, v_{\text {new }}\right]=\left[Q_{L}, \tilde{q}_{L, k+1}\right]\left[\begin{array}{cc}
R_{L} & r_{L, k+1} \\
0 & \tau_{L, k+1}
\end{array}\right] .
\end{aligned}
$$

The GKS method for the adaptive minimization problem
Let $V_{k} \in \mathbf{R}^{n \times d}, d=k+l \ll n$. Compute the QR factorizations
$W_{\text {fid }}^{1 / 2} A V_{k}=Q_{A} R_{A} \quad$ with $\quad Q_{A} \in \mathbf{R}^{r \times d}, \quad R_{A} \in \mathbf{R}^{d \times d}$, $W_{\text {reg }}^{1 / 2} L V_{k} \quad=\quad Q_{L} R_{L} \quad$ with $\quad Q_{L} \in \mathbf{R}^{s \times d}, \quad R_{L} \in \mathbf{R}^{d \times d}$.

Substituting into minimization problem gives small problem

$$
\min _{y \in \mathbf{R}^{k+l}}\left\|\left[\begin{array}{c}
R_{A} \\
\mu^{1 / 2} R_{L}
\end{array}\right] y-\left[\begin{array}{c}
Q_{A}^{T} W_{\text {fid }}^{1 / 2} b \\
0
\end{array}\right]\right\|_{2}^{2} .
$$

Residual vector for the normal equations:

$$
\begin{aligned}
r^{(k+1)} & =T\left(W_{\mathrm{fid}}, W_{\mathrm{reg}}\right) x^{(k+1)}-A^{T} W_{\mathrm{fid}} b \\
& =A^{T} W_{\mathrm{fid}}\left(A V_{k} y^{(k+1)}-b\right)+\mu L^{T} W_{\mathrm{reg}}\left(L V_{k} y^{(k+1)}\right)
\end{aligned}
$$

is normalized, reorthogonalized, and appended to the matrix V_{k}.

Convergence analysis for the MM-GKS methods
The MM-GKS approach can be written in the form
$x^{(k+1)}:= \begin{cases}\arg \min _{x \in \mathcal{V}_{k}} Q\left(x, x^{(k)}\right) & \text { for } k=0,1, \ldots, n-l-1, \\ \arg \min _{x \in \mathbf{R}^{n}} Q\left(x, x^{(k)}\right) & \text { for } k=n-l, n-l+1, \ldots\end{cases}$
where

- $l \geq 1$ is the dimension of the user-specified initial subspace \mathcal{V}_{0},
- \mathcal{V}_{k} is the generalized Krylov subspace used at iteration k,
- $Q\left(x, x^{(k)}\right)$ is either $Q^{(A)}\left(x, x^{(k)}\right)$ or $Q^{(F)}\left(x, x^{(k)}\right)$.

Theorem: Let each linearized minimization problem have a unique solution. Then, for any initial guess $x^{(0)} \in \mathbf{R}^{n}$, the sequence $\left\{\mathcal{J}_{\varepsilon}\left(x^{(k)}\right)\right\}_{k \geq 0}$ is monotonically non-increasing and convergent.

Theorem: Let each linearized minimization problem have a unique solution. Then, for any initial guess $x^{(0)} \in \mathbf{R}^{n}$, the sequence $\left\{x^{(k)}\right\}_{k \geq 1}$ converges to a stationary point of $\mathcal{J}_{\mathcal{E}}(x)$. Thus,

$$
\begin{aligned}
& \text { a. } \quad \lim _{k \rightarrow \infty}\left\|x^{(k+1)}-x^{(k)}\right\|_{2}=0, \\
& \text { b. } \quad \lim _{k \rightarrow \infty} \nabla_{x} \mathcal{J}_{\varepsilon}\left(x^{(k)}\right)=0
\end{aligned}
$$

Corollary: If in addition $p>1$ and $q>1$, then for any initial guess $x^{(0)} \in \mathbf{R}^{n}$, the sequence $\left\{x^{(k)}\right\}_{k \geq 0}$ converges towards the unique global minimizer of the smoothed $\ell_{p}-\ell_{q}$ functional.

Determining the regularization parameter for $p=2$ by the discrepancy principle

Assume that a bound $\left\|b-b_{\text {exact }}\right\|_{2} \leq \delta$ is known.

- Use a monotonically decreasing sequence of regularization parameter values $\mu=\mu_{k}$. Let $x^{(k)}$ be the solution of the minimization problem with $\mu=\mu_{k}$ and assume that the matrix A is nonsingular. Terminate the above iterations with the discrepancy principle, i.e., as soon as $\left\|A x^{(k)}-b\right\|_{2} \leq \delta$, Then

$$
\limsup _{\delta \searrow 0}\left\|x^{(k)}-x_{\text {exact }}\right\|_{2}=0
$$

- Choose $\mu=\mu_{k}$ in each iteration so that $\left\|A x^{(k)}-b\right\|_{2}=\delta$. Then there is a subsequence $x^{\left(k_{j}\right)}$, $j=1,2, \ldots$, of computed solutions such that

$$
\limsup _{\delta \searrow 0}\left\|x^{\left(k_{j}\right)}-x_{\text {exact }}\right\|_{2}=0
$$

Determining the regularization parameter by (standard) cross validation

Consider for simplicity Tikhonov regularization in standard form

$$
\min _{x \in \mathbf{R}^{n}}\left\{\|A x-b\|_{2}^{2}+\mu\|x\|_{2}^{2}\right\} .
$$

The CV method partitions b into two subsets (several times): the training set and the testing set.

- The training set is used for solving the problem (with the rows of the testing set removed) for different regularization parameters.
- The testing set is used to validate the computed solution and select a suitable regularization parameter.

Assume first that the testing set consists of the first d rows of A and b. Let

$$
\begin{aligned}
& \widetilde{b}=\left[b_{d+1}, b_{d+2}, \ldots, b_{m}\right]^{T} \\
& \widetilde{A}=\left[\begin{array}{cccc}
A_{d+1,1} & A_{d+1,2} & \ldots & A_{d+1, n} \\
A_{d+2,1} & A_{d+2,2} & \ldots & A_{d+2, n} \\
\vdots & \vdots & \ldots & \vdots \\
A_{m, 1} & A_{m, 2} & \ldots & A_{m, n}
\end{array}\right] .
\end{aligned}
$$

Let $\mu_{1}>\mu_{2}>\ldots>\mu_{l}>0$ be regularization parameters, say,

$$
\mu_{j+1}=\mu_{j} / 10, \quad j=1,2, \ldots, l-1
$$

Solve Tikhonov minimization problem with A, b, and μ replaced by $\widetilde{A}, \widetilde{b}$, and μ_{j}, repectively. Gives solutions $x_{\mu_{j}}$, $j=1,2, \ldots, l$.

Validate $x_{\mu_{j}}$ with the testing set, i.e., compute

$$
\rho_{j}=\sqrt{\sum_{i=1}^{d}\left(\left(A x_{\mu_{j}}\right)_{i}-b_{i}\right)^{2}}, \quad j=1,2, \ldots, l
$$

Let $1 \leq j^{*} \leq l$ be such that

$$
\rho_{j^{*}} \leq \rho_{j}, \quad j=1,2, \ldots, l .
$$

Let $\mu=\mu_{j^{*}}$.
Repeat for new training set obtained by removing d other rows of A and d. In the computed examples $d=l=10$ and 10 training sets.

Choose the regularization parameter to be the average of the μ-values computed.

Algorithm

for $k=1,2, \ldots, K$
\widetilde{A} and \widetilde{b} versions of A and b, in which the k th set of d consecutive rows have been removed

$$
\text { for } j=1,2, \ldots, l
$$

Let $x_{\mu_{j}}^{(k)}$ be Tikhonov solution with A, b, and μ replaced by $\widetilde{A}, \widetilde{b}$, and μ_{j}
$r_{j}^{(k)}=\sqrt{\sum_{i=d(k-1)+1}^{k d}\left(\left(A x_{\mu_{j}}^{(k)}\right)_{i}-b_{i}\right)^{2}}$
$j^{*}=\arg \min _{1 \leq j \leq l}\left\{r_{j}^{(k)}\right\}$

$$
\mu^{(k)}=\mu_{j^{*}}
$$

end
$\mu=\frac{1}{K} \sum_{k=1}^{K} \mu^{(k)}$

Determining the regularization parameter by modified cross validation

Compare predictions of computed solutions:

- Let I_{1} and I_{2} be distinct sets of d distinct random integers in $[1, n]$.
- For $i=1,2$, let \widetilde{A}_{i} and \widetilde{b}_{i} be obtained by removing rows with indices in I_{i} from A and b.
- Let $\mu_{1}>\mu_{2}>\ldots>\mu_{l}>0$ be regularization parameters.
- For $i=1,2$, let $x_{\mu_{j}}^{(i)}$ solve the Tikhonov regularization problem A, b, and μ replaced by $\widetilde{A}_{i}, \widetilde{b}$, and μ_{j}.
- Compute

$$
\Delta x_{j}=\left\|x_{\mu_{j}}^{(1)}-x_{\mu_{j}}^{(2)}\right\|_{2}, \quad j=1,2, \ldots, l,
$$

- Let $\mu^{(k)}$ minimize Δx_{j} over $j=1,2, \ldots, l$.

Repeat for several sets I_{1} and I_{2}. Let μ be the average of the $\mu^{(k)}$ computed.

The IRN method

Method proposed by Rodriguez and Wohlberg. Apply the conjugate gradient method to solve the sequence normal equations determined by adaptive approach.

Computed examples

We report the Signal-to-Noise ratio (SNR):

$$
\operatorname{SNR}\left(x^{*}, \bar{x}\right):=10 \log _{10} \frac{\|\bar{x}-E(\bar{x})\|_{2}^{2}}{\left\|x^{*}-\bar{x}\right\|_{2}^{2}}(\mathrm{~dB}),
$$

where $E(\bar{x})$ denotes the mean gray level of the uncontaminated image \bar{x}.

We use the initial subspace

$$
\mathcal{V}_{0}=\operatorname{span}\left\{A^{T} b\right\} . \quad(l=1)
$$

Example: Cameraman image: 512×512 pixels.
Original image

Contaminated image, $\mathrm{SNR}=-0.80$

20% salt-and-pepper noise, Gaussian blur.

Restored image by $\ell_{1}-\ell_{1}$ TV minimization, $\mathrm{SNR}=13.22$.

Restored image by $\ell_{0.7} \ell_{1.0}$ TV minimization, $\mathrm{SNR}=15.33$.

blur		noise		efficiency: time (iterations, MVPs)			accuracy: SNR		
band	σ	$\%$	μ	IRN	AMM	FMM	IRN	AMM	FMM

$\ell_{1}-\ell_{1}$									
9	2.5	10	0.004	303.12	163.08	42.83	13.00	12.99	12.98
				$(39,6182)$	$(177,708)$	$(202,808)$			
		20	0.005	291.40	155.69	44.63	12.01	12.01	12.05
				$(42,5892)$	$(174,696)$	$(203,812)$			
		30	0.020	180.29	65.89	29.23	11.64	11.65	11.69
				$(55,3586)$	$(123,492)$	$(162,648)$			

$\ell_{0.7} \ell_{1}$									
9	2.5	10	0.004	497.87	427.96	70.49	15.20	15.19	15.15
				$(34,10292)$	$(256,1024)$	$(274,1096)$			
		20	0.006	430.04	300.07	69.08	14.29	14.28	14.26
				$(37,8838)$	$(224,896)$	$(265,1060)$			
		30	0.010	$\begin{gathered} 365.49 \\ (41,7450) \end{gathered}$	$\begin{gathered} 224.34 \\ (201.804) \end{gathered}$	$\begin{gathered} 67.20 \\ (266.1064) \end{gathered}$	13.47	13.47	13.43

Convergence of functional and difference between consecutive iterates.

Application of wavelets

Compute a sparse solution by using a two-level framelet analysis operator as regularization operator L. Framelets are extensions of wavelets.

Let $\mathbb{A} \in \mathbf{R}^{r \times n}$ with $n \leq r$. The set of the rows of \mathbb{A} is a tight frame for \mathbb{R}^{n} if

$$
\|x\|_{2}^{2}=\sum_{j=1}^{r} y_{j}^{T} x \quad \forall x \in \mathbf{R}^{n}
$$

where $y_{j} \in \mathbf{R}^{n}$ is the j th row of \mathbb{A} (written as a column vector), i.e., $\mathbb{A}=\left[y_{1}, \ldots, y_{r}\right]^{T}$. The matrix \mathbb{A} is referred to as an analysis operator and \mathbb{A}^{T} as a synthesis operator.

Tight frames determined by B-splines: Made up of a low-pass filter W_{0} and two high-pass filters W_{1} and W_{2} defined by the masks
$w^{(0)}=\frac{1}{2}(1,2,1), w^{(1)}=\frac{\sqrt{2}}{4}(1,0,-1), w^{(2)}=\frac{1}{4}(-1,2,-1)$.
These masks and reflective boundary conditions yield the matrices

$$
W_{0}=\frac{1}{4}\left(\begin{array}{ccccc}
3 & 1 & 0 & \ldots & 0 \\
1 & 2 & 1 & & \\
& \ddots & \ddots & \ddots & \\
& & 1 & 2 & 1 \\
0 & \ldots & 0 & 1 & 3
\end{array}\right), W_{1}=\frac{\sqrt{2}}{4}\left(\begin{array}{ccccc}
-1 & 1 & 0 & \ldots & 0 \\
-1 & 0 & 1 & & \\
& \ddots & \ddots & \ddots & \\
& & -1 & 0 & 1 \\
0 & \ldots & 0 & -1 & 1
\end{array}\right),
$$

$$
W_{2}=\frac{1}{4}\left(\begin{array}{ccccc}
1 & -1 & 0 & \ldots & 0 \\
-1 & 2 & -1 & & \\
& \ddots & \ddots & \ddots & \\
& & -1 & 2 & -1 \\
0 & \ldots & 0 & 1 & 1
\end{array}\right)
$$

This gives the analysis operator for problems in 1D:

$$
\mathbb{A}=\left[\begin{array}{l}
W_{0} \\
W_{1} \\
W_{2}
\end{array}\right]
$$

with $\mathbb{A}^{T} \mathbb{A}=I$.

In 2 D : Let $W_{i j}=W_{i} \otimes W_{j}$ and define

$$
\mathbb{A}=\left[\begin{array}{c}
W_{00} \\
W_{01} \\
\vdots \\
W_{22}
\end{array}\right]
$$

Original image, 246×246 pixels.

PSF, 9×9 pixels.

Image contaminated by blur and 1% white Gaussian noise.

Restored image by FMM-GKS, best regularization parameter.

Restored image by FMM-GKS, regularization parameter determined by monotonically decreasing sequence.

Restored image by FMM-GKS, regularization parameter determined by discrepancy principle.

Restoration of clock image.

Method	relative error	\# iterations
MM-GKS-R	0.032887	29
MM-GKS-MD	0.036663	5
MM-GKS-DP	$\mathbf{0 . 0 3 2 8 2 8}$	28

New PSF, 29×29 pixels.

Image contaminated by blur and 10% salt-and pepper noise.

Restoration, optimal regularization parameter: PSNR=33.81.

Restoration, regularization parameter by cross validation: PSNR=29.51.

Restoration, regularization parameter by modified cross validation: $\mathrm{PSNR}=33.14$.

PSNR vs. the regularization parameter: star=optimal, square $=\mathrm{MCV}$, circle $=\mathrm{CV}$.

250×250 pixels

Original image

Out-of-focus PSF, 26×26 pixels

Blurred and noisy image, 30% salt-and-pepper noise

Restored image, optimal $\mu, p=0.8, q=0.5$, $\mathrm{PSNR}=26.15$

Restored image, CV $\mu, p=0.8, q=0.5, \mathrm{PSNR}=25.27$

Restored image, MCV $\mu, p=0.8, q=0.5, \mathrm{PSNR}=26.15$

247×247 pixels

Original image

Motion PSF, 27×27 pixels

Blurred and noisy image, 10% salt-and-pepper noise and white Gaussian noise

Restored image, optimal $\mu, p=0.8, q=0.1$, $\mathrm{PSNR}=26.58$

Restored image, CV $\mu, p=0.8, q=0.1, \mathrm{PSNR}=25.49$

Restored image, $\mathrm{MCV} \mu, p=0.8, q=0.1, \mathrm{PSNR}=25.74$

234×182 pixels

Original image

Motion PSF, 17×17 pixels

Blurred and noisy image, 20% salt-and-pepper noise and 1% Gaussian noise

Restored image, CV, $p=0.8, q=0.1$, relative error $=0.0740$

Restored image, MCV, $p=0.8, q=0.1$, relative error $=0.0689$

Grazie 10^{3}

