
Grid transfer operators for multigrid methods

Marco Donatelli

University of Insubria
Department of Physics and Mathematics

“GAMM 2011”
Graz 18-21, April 2011



Outline

Marco Donatelli (University of Insubria) GAMM 2011 2 / 1



Classic convergence analysis for geometric multigrid

The constant coefficient case

The classic convergence analysis for multigrid methods assumes:

• d-dimensional PDE with constant coefficients

(−1)q
d

∑

i=1

d
2q

dx2q
i

u(x) = g(x), x ∈ Ω = (0, 1)d , q ≥ 1.

• Periodic boundary conditions on ∂Ω or an infinite domain.

• Discretization by centered finite difference of minimal precision on a
uniform grid.
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Classic convergence analysis for geometric multigrid

Local Fourier Analysis

The Fourier transform of the discrete differential operator is

L̂(ω) =
∑

j∈Zd

lje
i〈jh|ω〉,

where ω ∈ [−π/h, π/h]d denotes the frequencies for the current
discretization step h and

lj =
hd

(2π)d

∫

[−π/h, π/h]d
L̂(ω)e−i〈jh|ω〉

dω.
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Classic convergence analysis for geometric multigrid

The convergence result

Theorem (Convergence)

Given a constant-coefficient PDE of order m, a necessary condition for
nonincreasing high frequencies arising from a coarse grid correction is

γr + γp ≥ m, (1)

where γp and γr are the order of the prolongation and of the restriction
respectively.

Definition
A prolongation (restriction) has order γp if it (its transpose) leaves
unchanged all polynomials of degree γp − 1.
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Classic convergence analysis for geometric multigrid

More general orders

Definition
The set of all corners of x is

Ω(x) = { y | yj ∈ {xj , π + xj}, j = 1, . . . , d}

and the set of the “mirror” points of x is M(x) = Ω(x) \ {x}.
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Classic convergence analysis for geometric multigrid

More general orders

Definition
The set of all corners of x is

Ω(x) = { y | yj ∈ {xj , π + xj}, j = 1, . . . , d}

and the set of the “mirror” points of x is M(x) = Ω(x) \ {x}.

Definition (P. W. Hemker 1990)

For a grid transfer operator B ∈ {R ,P} (B is multiplied by 2d when
B = P), for x = ωh, |x | → 0, the largest s ≥ 0 such that

B̂(x) = 1 + O(|x |s), is the Low Frequency (LF) order

B̂(y) = O(|x |s), ∀y ∈ M(x), is the High Frequency (HF) order
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Classic convergence analysis for geometric multigrid

New convergence conditions

Theorem
In the Convergence Theorem the order γp and γr are the HF order of the
prolongation and of the restriction respectively.
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Classic convergence analysis for geometric multigrid

New convergence conditions

Theorem
In the Convergence Theorem the order γp and γr are the HF order of the
prolongation and of the restriction respectively.

Lemma (P. W. Hemker 1990)

If a prolongation leaves all polynomials of degree k − 1 invariant, then
both the LF and HF orders are at least k.
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Classic convergence analysis for geometric multigrid

New convergence conditions

Theorem
In the Convergence Theorem the order γp and γr are the HF order of the
prolongation and of the restriction respectively.

Lemma (P. W. Hemker 1990)

If a prolongation leaves all polynomials of degree k − 1 invariant, then
both the LF and HF orders are at least k.

Remark (I. Yavneh 1998)

The same analysis for the Galerkin approach requires LF> 0 .
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Classic convergence analysis for geometric multigrid

Grid transfer operators

Interpolation operators

• Linear interpolation: 1
2 [1 2 1]

LF order = HF order = 2

• cubic interpolation: 1
16 [−1 0 9 16 9 0 − 1]

LF order = HF order = 4
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Classic convergence analysis for geometric multigrid

Grid transfer operators

Interpolation operators

• Linear interpolation: 1
2 [1 2 1]

LF order = HF order = 2

• cubic interpolation: 1
16 [−1 0 9 16 9 0 − 1]

LF order = HF order = 4

Noninterpolantion operator

• Refinement coefficients of the B-spline of order 4:
1
16 [1 4 6 4 1] =⇒ LF order = 2, HF order = 4.
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Multigrid methods for Toeplitz matrices

Toeplitz matrices and L̂(ω)

• The d-level Toeplitz matrix Tn(f ) is such that

[Tn(f )]r ,s = as−r = aj =
1

(2π)d

∫

[−π,π]d
f (x)e−i〈j |x〉 dx , r , s, j ∈ Z

d .

• f ≥ 0 ⇔ Tn(f ) is positive definite.
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• The d-level Toeplitz matrix Tn(f ) is such that

[Tn(f )]r ,s = as−r = aj =
1

(2π)d

∫

[−π,π]d
f (x)e−i〈j |x〉 dx , r , s, j ∈ Z

d .

• f ≥ 0 ⇔ Tn(f ) is positive definite.

• The change of variable x = ωh ⇒ aj = lj and f (x) = L̂(ω).
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Multigrid methods for Toeplitz matrices

Toeplitz matrices and L̂(ω)

• The d-level Toeplitz matrix Tn(f ) is such that

[Tn(f )]r ,s = as−r = aj =
1

(2π)d

∫

[−π,π]d
f (x)e−i〈j |x〉 dx , r , s, j ∈ Z

d .

• f ≥ 0 ⇔ Tn(f ) is positive definite.

• The change of variable x = ωh ⇒ aj = lj and f (x) = L̂(ω).

Example

1D Laplacian: L̂(ω) = 1
h2 (2 − 2 cos(ωh)). The Toeplitz approach moves

the factor 1
h2 to the rhs, thus An = Tn(f ), where f (x) = 2 − 2 cos(x),

which vanishes at the origin with order 2.
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Multigrid methods for Toeplitz matrices

MGM convergence for Toeplitz matrices

• Galerkin approach: Ak = PTAnP (An positive definite).

• Convergence analysis for the algebra case like τ or circulant algebra.

Marco Donatelli (University of Insubria) GAMM 2011 10 / 1



Multigrid methods for Toeplitz matrices

MGM convergence for Toeplitz matrices

• Galerkin approach: Ak = PTAnP (An positive definite).

• Convergence analysis for the algebra case like τ or circulant algebra.

Theorem (G. Fiorentino and S. Serra-Capizzano 1991, 1996, (2002))

Let An = Cn(f ) be circulant with f having a unique zero at x0. Defining
P = Cn(p)KT

n , where Kn is the down-sampling and p is a trigonometric
polynomial non identically zero and such that for each x ∈ [−π, π)d

lim sup
x→x0

∣

∣

∣

∣

p(y)2

f (x)

∣

∣

∣

∣

= c < +∞, ∀ y ∈ M(x), (2a)

∑

y∈Ω(x)

p(y)2 > 0, (2b)

then the TGM converges in a number of iterations independent of n.
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Equivalence of the two approaches

Equivalence of the two approaches

Theorem (D. 2010)

In the case of

• constant coefficient PDEs,

• periodic boundary conditions,

• R = PT ,

the two conditions (1) (HF order) and (2a) are equivalent.
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Equivalence of the two approaches

Equivalence of the two approaches

Theorem (D. 2010)

In the case of

• constant coefficient PDEs,

• periodic boundary conditions,

• R = PT ,

the two conditions (1) (HF order) and (2a) are equivalent.

Remark
The (2b) is equivalent to require LF > 0.
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Consequences

Consequences of such equivalence

1 For the Galerkin approach, the analysis with circulant matrices is
more general since it includes also non differential problems, like for
instance some integral problems.
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Consequences

Consequences of such equivalence

1 For the Galerkin approach, the analysis with circulant matrices is
more general since it includes also non differential problems, like for
instance some integral problems.

2 Allow to define a MGM for Toeplitz matrices with R 6= P .

3 Allow to compare the grid transfer operators used in the two
approaches.
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Consequences

Grid transfer operators for Toeplitz matrices

• p(x) =
∏d

j=1(1 + cos(xj − x
(0)
j ))q for f (x(0)) = 0 with order 2q.
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Consequences

Grid transfer operators for Toeplitz matrices

• p(x) =
∏d

j=1(1 + cos(xj − x
(0)
j ))q for f (x(0)) = 0 with order 2q.

• In the PDE setting x(0) = 0 and p(x) can be generalized as

ϕm(x) = 2−dm

d
∏

j=1

(

1 + e
−ixj

)m
.

ϕm has HF= m and LF= 2.
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Consequences

Grid transfer operators for Toeplitz matrices

• p(x) =
∏d

j=1(1 + cos(xj − x
(0)
j ))q for f (x(0)) = 0 with order 2q.

• In the PDE setting x(0) = 0 and p(x) can be generalized as

ϕm(x) = 2−dm

d
∏

j=1

(

1 + e
−ixj

)m
.

ϕm has HF= m and LF= 2.

• The grid transfer operators with HF= m can be obtained by
ϕm(x)ψm(x) such that ψm(y) 6= 0 for all y ∈ M(0) and ψm(0) = 1.
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Consequences

B-spline refinement coefficients

• The coefficients of ϕm are the refinement coefficients of the B-spline
of order m in the MRA.

• φm(x) = ϕm(x)eix⌊m
2
⌋ defines centered B-spline.
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Consequences

B-spline refinement coefficients

• The coefficients of ϕm are the refinement coefficients of the B-spline
of order m in the MRA.

• φm(x) = ϕm(x)eix⌊m
2
⌋ defines centered B-spline.

The refinement coefficients hk 6= 0, k ∈ Z for 2mφm in the 1D case.

m h−2 h−1 h0 h1 h2

1 1 1
2 1 2 1
3 1 3 3 1
4 1 4 6 4 1
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Consequences

B-spline refinement coefficients

• The coefficients of ϕm are the refinement coefficients of the B-spline
of order m in the MRA.

• φm(x) = ϕm(x)eix⌊m
2
⌋ defines centered B-spline.

The refinement coefficients hk 6= 0, k ∈ Z for 2mφm in the 1D case.

m h−2 h−1 h0 h1 h2

1 1 1
2 1 2 1
3 1 3 3 1
4 1 4 6 4 1

• m = 2q ⇒ vertex centered discretization.

• m = 2q + 1 ⇒ cell centered discretization.
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Numerical results

Grid transfer operators comparison

We consider the following PDE







d
2

dx2

(

a(x)
d

2

dx2
u(x)

)

= g(x), x ∈ (0, 1),

homogeneous boundary conditions

with nonconstant a(x).

• It has order m = 4.

• Smoother: Gauss-Seidel

• Galerkin approach

• The condition for V -cycle is at least γr + γp>m.
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Numerical results

Iteration numbers

V -cycle iteration numbers varying the problem size n and a(x) = (x − 0.5)2.

restriction φ2 φ2 φ2 φ4 φ4

prolongation φ2 φ4 gc φ4 gc

n # iterations

15 15 10 10 9 9
31 33 13 17 10 11
63 61 17 24 13 11
127 101 26 27 17 13
255 155 35 29 20 16
511 221 44 36 24 19
1023 284 53 46 27 22

• gc = cubic interpolation

• For the choices (φ2, gc) and (φ4, φ4), the coarse matrices have the
same bandwidth.
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Numerical results

An image deblurring problem

Riley regularization:
Tn,n(z + θ)f = g

Observed image
2% of noise

MGM
reconstruction

θ 10−2 10−3 10−4

Linear interpolation 45 286 > 1000
Toeplitz (*) 49 73 73

(*) p(x , y) = (2 − 2 cos(x))2(2 − 2 cos(y))2
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Numerical results

Summary

• In the case of elliptic PDEs and Galerkin approach, the LFA and the
theory for Toeplitz matrices give the same conditions.

• The LFA does not requires R = PT =⇒ R 6= PT also for Toeplitz
matrices.

• The convergence theory for Toeplitz matrices includes other
applications (e.g. image deblurring).

• Introduce a class of grid transfer operators associated to B-spline.

Reference
M. Donatelli, An algebraic generalization of local Fourier analysis for
grid transfer operators in multigrid based on Toeplitz matrices, Numer.
Linear Algebra Appl., 17 (2010), pp. 179–197.
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Numerical results

About V-cycle . . .

V -cycle optimality with Ruge-Stüben theory and Perron-Frobenius
theorem.

Theorem (A. Aricò, D., and S. Serra-Capizzano, 2004)

TGM ⇒ V -cycle

lim sup
x→x0

∣

∣

∣

∣

p(y)2×

f (x)

∣

∣

∣

∣

= c < +∞, ∀ y ∈ M(x),

[Multidimensional case A. Aricò and M. D., 2007]

Remark
This is equivalent to γp ≥ m (γp + γr ≥ 2m) instead of 2γp > m
(γp + γr > m). This condition is also necessary [A. Napov and Y. Notay,
NM 2011].
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