Grid transfer operators for multigrid methods

Marco Donatelli

University of Insubria Department of Physics and Mathematics

> "GAMM 2011" Graz 18-21, April 2011

Outline

The constant coefficient case

The classic convergence analysis for multigrid methods assumes:

• *d*-dimensional PDE with constant coefficients

$$(-1)^q \sum_{i=1}^d \frac{\mathrm{d}^{2q}}{\mathrm{d} x_i^{2q}} u(x) = g(x), \qquad x \in \Omega = (0,1)^d, \ q \ge 1.$$

- Periodic boundary conditions on $\partial \Omega$ or an infinite domain.
- Discretization by centered finite difference of minimal precision on a uniform grid.

Local Fourier Analysis

The Fourier transform of the discrete differential operator is

$$\hat{L}(\omega) = \sum_{j \in \mathbb{Z}^d} I_j \mathrm{e}^{\mathrm{i}\langle jh | \omega
angle},$$

where $\omega \in [-\pi/h, \pi/h]^d$ denotes the frequencies for the current discretization step h and

$$I_{j} = \frac{h^{d}}{(2\pi)^{d}} \int_{[-\pi/h, \pi/h]^{d}} \hat{L}(\omega) \mathrm{e}^{-\mathrm{i}\langle jh|\omega\rangle} \mathrm{d}\omega.$$

The convergence result

Theorem (Convergence)

Given a constant-coefficient PDE of order m, a necessary condition for nonincreasing high frequencies arising from a coarse grid correction is

$$\gamma_r + \gamma_p \ge m,\tag{1}$$

where γ_p and γ_r are the order of the prolongation and of the restriction respectively.

Definition

A prolongation (restriction) has order γ_p if it (its transpose) leaves unchanged all polynomials of degree $\gamma_p - 1$.

More general orders

Definition The set of all corners of x is

$$\Omega(x) = \{ y \mid y_j \in \{x_j, \pi + x_j\}, j = 1, \dots, d \}$$

and the set of the "mirror" points of x is $\mathcal{M}(x) = \Omega(x) \setminus \{x\}$.

More general orders

Definition

The set of all corners of x is

$$\Omega(x) = \{ y \mid y_j \in \{x_j, \pi + x_j\}, j = 1, \dots, d \}$$

and the set of the "mirror" points of x is $\mathcal{M}(x) = \Omega(x) \setminus \{x\}$.

Definition (P. W. Hemker 1990)

For a grid transfer operator $B \in \{R, P\}$ (B is multiplied by 2^d when B = P), for $x = \omega h$, $|x| \to 0$, the largest $s \ge 0$ such that

$$\hat{B}(x) = 1 + O(|x|^{s}),$$
 is the Low Frequency (LF) order
 $\hat{B}(y) = O(|x|^{s}), \quad \forall y \in \mathcal{M}(x),$ is the High Frequency (HF) order

New convergence conditions

Theorem

In the Convergence Theorem the order γ_p and γ_r are the HF order of the prolongation and of the restriction respectively.

New convergence conditions

Theorem

In the Convergence Theorem the order γ_p and γ_r are the HF order of the prolongation and of the restriction respectively.

Lemma (P. W. Hemker 1990)

If a prolongation leaves all polynomials of degree k - 1 invariant, then both the LF and HF orders are at least k.

New convergence conditions

Theorem

In the Convergence Theorem the order γ_p and γ_r are the HF order of the prolongation and of the restriction respectively.

Lemma (P. W. Hemker 1990)

If a prolongation leaves all polynomials of degree k - 1 invariant, then both the LF and HF orders are at least k.

Remark (I. Yavneh 1998)

The same analysis for the Galerkin approach requires LF > 0.

Grid transfer operators

Interpolation operators

- Linear interpolation: $\frac{1}{2}\begin{bmatrix} 1 & 2 & 1 \end{bmatrix}$ LF order = HF order = 2
- cubic interpolation: $\frac{1}{16}[-1 \quad 0 \quad 9 \quad 16 \quad 9 \quad 0 \quad -1]$ LF order = HF order = 4

Grid transfer operators

Interpolation operators

- Linear interpolation: $\frac{1}{2}\begin{bmatrix} 1 & 2 & 1 \end{bmatrix}$ LF order = HF order = 2
- cubic interpolation: $\frac{1}{16}[-1 \quad 0 \quad 9 \quad 16 \quad 9 \quad 0 \quad -1]$ LF order = HF order = 4

Noninterpolantion operator

• Refinement coefficients of the B-spline of order 4: $\frac{1}{16}[1 \quad 4 \quad 6 \quad 4 \quad 1] \implies \text{LF order} = 2, \text{ HF order} = 4.$

Toeplitz matrices and $\hat{L}(\omega)$

• The *d*-level Toeplitz matrix $T_n(f)$ is such that

$$[T_n(f)]_{r,s} = a_{s-r} = a_j = \frac{1}{(2\pi)^d} \int_{[-\pi,\pi]^d} f(x) e^{-\mathrm{i}\langle j | x \rangle} dx, \qquad r,s,j \in \mathbb{Z}^d.$$

• $f \ge 0 \quad \Leftrightarrow \quad T_n(f)$ is positive definite.

Toeplitz matrices and $\hat{L}(\omega)$

• The *d*-level Toeplitz matrix $T_n(f)$ is such that

$$[T_n(f)]_{r,s} = a_{s-r} = a_j = \frac{1}{(2\pi)^d} \int_{[-\pi,\pi]^d} f(x) e^{-\mathrm{i}\langle j | x \rangle} dx, \qquad r,s,j \in \mathbb{Z}^d.$$

• $f \ge 0 \quad \Leftrightarrow \quad T_n(f)$ is positive definite.

• The change of variable $x = \omega h \Rightarrow a_j = l_j$ and $f(x) = \hat{L}(\omega)$.

Toeplitz matrices and $\hat{L}(\omega)$

• The *d*-level Toeplitz matrix $T_n(f)$ is such that

$$[T_n(f)]_{r,s} = a_{s-r} = a_j = \frac{1}{(2\pi)^d} \int_{[-\pi,\pi]^d} f(x) e^{-\mathrm{i}\langle j | x \rangle} dx, \qquad r,s,j \in \mathbb{Z}^d.$$

• $f \ge 0 \quad \Leftrightarrow \quad T_n(f)$ is positive definite.

• The change of variable $x = \omega h \Rightarrow a_j = l_j$ and $f(x) = \hat{L}(\omega)$.

Example

1D Laplacian: $\hat{L}(\omega) = \frac{1}{h^2}(2 - 2\cos(\omega h))$. The Toeplitz approach moves the factor $\frac{1}{h^2}$ to the rhs, thus $A_n = T_n(f)$, where $f(x) = 2 - 2\cos(x)$, which vanishes at the origin with order 2.

MGM convergence for Toeplitz matrices

- Galerkin approach: $A_k = P^T A_n P$ (A_n positive definite).
- Convergence analysis for the algebra case like au or circulant algebra.

MGM convergence for Toeplitz matrices

- Galerkin approach: $A_k = P^T A_n P$ (A_n positive definite).
- Convergence analysis for the algebra case like τ or circulant algebra.

Theorem (G. Fiorentino and S. Serra-Capizzano 1991, 1996, (2002)) Let $A_n = C_n(f)$ be circulant with f having a unique zero at x^0 . Defining $P = C_n(p)K_n^T$, where K_n is the down-sampling and p is a trigonometric polynomial non identically zero and such that for each $x \in [-\pi, \pi)^d$

$$\limsup_{x \to x^0} \left| \frac{p(y)^2}{f(x)} \right| = c < +\infty, \qquad \forall y \in \mathcal{M}(x), \tag{2a}$$

$$\sum_{y \in \Omega(x)} p(y)^2 > 0, \tag{2b}$$

then the TGM converges in a number of iterations independent of n.

Equivalence of the two approaches

Theorem (D. 2010)

In the case of

- constant coefficient PDEs,
- periodic boundary conditions,
- $R = P^T$,

the two conditions (1) (HF order) and (2a) are equivalent.

Equivalence of the two approaches

Theorem (D. 2010)

In the case of

- constant coefficient PDEs,
- periodic boundary conditions,
- $R = P^T$,

the two conditions (1) (HF order) and (2a) are equivalent.

Remark The (2b) is equivalent to require LF > 0.

Consequences of such equivalence

I For the Galerkin approach, the analysis with circulant matrices is more general since it includes also non differential problems, like for instance some integral problems.

Consequences of such equivalence

- For the Galerkin approach, the analysis with circulant matrices is more general since it includes also non differential problems, like for instance some integral problems.
- **2** Allow to define a MGM for Toeplitz matrices with $R \neq P$.

Consequences of such equivalence

- For the Galerkin approach, the analysis with circulant matrices is more general since it includes also non differential problems, like for instance some integral problems.
- 2 Allow to define a MGM for Toeplitz matrices with $R \neq P$.
- 3 Allow to compare the grid transfer operators used in the two approaches.

Grid transfer operators for Toeplitz matrices

• $p(x) = \prod_{j=1}^{d} (1 + \cos(x_j - x_j^{(0)}))^q$ for $f(x^{(0)}) = 0$ with order 2q.

Grid transfer operators for Toeplitz matrices

- $p(x) = \prod_{j=1}^{d} (1 + \cos(x_j x_j^{(0)}))^q$ for $f(x^{(0)}) = 0$ with order 2q.
- In the PDE setting $x^{(0)} = 0$ and p(x) can be generalized as

$$\varphi_m(x) = 2^{-dm} \prod_{j=1}^d \left(1 + e^{-ix_j}\right)^m.$$

$$\varphi_m$$
 has HF= m and LF= 2.

Grid transfer operators for Toeplitz matrices

- $p(x) = \prod_{j=1}^{d} (1 + \cos(x_j x_j^{(0)}))^q$ for $f(x^{(0)}) = 0$ with order 2q.
- In the PDE setting $x^{(0)} = 0$ and p(x) can be generalized as

$$\varphi_m(x) = 2^{-dm} \prod_{j=1}^d \left(1 + \mathrm{e}^{-\mathrm{i}x_j}\right)^m.$$

$$\varphi_m$$
 has HF= *m* and LF= 2.

• The grid transfer operators with HF = m can be obtained by $\varphi_m(x)\psi_m(x)$ such that $\psi_m(y) \neq 0$ for all $y \in \mathcal{M}(0)$ and $\psi_m(0) = 1$.

B-spline refinement coefficients

- The coefficients of φ_m are the refinement coefficients of the B-spline of order *m* in the MRA.
- $\phi_m(x) = \varphi_m(x) e^{ix \lfloor \frac{m}{2} \rfloor}$ defines centered B-spline.

B-spline refinement coefficients

- The coefficients of φ_m are the refinement coefficients of the B-spline of order m in the MRA.
- $\phi_m(x) = \varphi_m(x) e^{ix \lfloor \frac{m}{2} \rfloor}$ defines centered B-spline.

The refinement coefficients $h_k \neq 0$, $k \in \mathbb{Z}$ for $2^m \phi_m$ in the 1D case.

т	h_2	h_{-1}	h_0	h_1	h_2
1		1	1		
2		1	2	1	
3	1	3	3	1	
4	1	4	6	4	1

B-spline refinement coefficients

- The coefficients of φ_m are the refinement coefficients of the B-spline of order *m* in the MRA.
- $\phi_m(x) = \varphi_m(x) e^{ix \lfloor \frac{m}{2} \rfloor}$ defines centered B-spline.

The refinement coefficients $h_k \neq 0$, $k \in \mathbb{Z}$ for $2^m \phi_m$ in the 1D case.

т	h_2	h_{-1}	h_0	h_1	<i>h</i> ₂
1		1	1		
2		1	2	1	
3	1	3	3	1	
4	1	4	6	4	1

• $m = 2q \Rightarrow$ vertex centered discretization.

• $m = 2q + 1 \Rightarrow$ cell centered discretization.

Grid transfer operators comparison

We consider the following PDE

$$\begin{cases} \frac{\mathrm{d}^2}{\mathrm{d}x^2} \left(a(x) \frac{\mathrm{d}^2}{\mathrm{d}x^2} u(x) \right) = g(x), \quad x \in (0, 1), \\ \text{homogeneous boundary conditions} \end{cases}$$

with nonconstant a(x).

- It has order m = 4.
- Smoother: Gauss-Seidel
- Galerkin approach
- The condition for V-cycle is at least $\gamma_r + \gamma_p > m$.

Iteration numbers

V-cycle iteration numbers varying the problem size *n* and $a(x) = (x - 0.5)^2$.

restriction	ϕ_2	ϕ_2	ϕ_2	$\phi_{ extsf{4}}$	ϕ_4	
prolongation	ϕ_2	ϕ_4	g c	$\phi_{ extsf{4}}$	g_c	
п	# iterations					
15	15	10	10	9	9	
31	33	13	17	10	11	
63	61	17	24	13	11	
127	101	26	27	17	13	
255	155	35	29	20	16	
511	221	44	36	24	19	
1023	284	53	46	27	22	

- $g_c = \text{cubic interpolation}$
- For the choices (φ₂, g_c) and (φ₄, φ₄), the coarse matrices have the same bandwidth.

Numerical results

An image deblurring problem

Riley regularization: $T_{n,n}(z + \theta)f = g$ Observed image 2% of noise

A.

MGM reconstruction

Summary

- In the case of elliptic PDEs and Galerkin approach, the LFA and the theory for Toeplitz matrices give the same conditions.
- The LFA does not requires R = P^T ⇒ R ≠ P^T also for Toeplitz matrices.
- The convergence theory for Toeplitz matrices includes other applications (e.g. image deblurring).
- Introduce a class of grid transfer operators associated to B-spline.

Reference

M. DONATELLI, An algebraic generalization of local Fourier analysis for grid transfer operators in multigrid based on Toeplitz matrices, Numer. Linear Algebra Appl., 17 (2010), pp. 179–197.

About V-cycle . . .

 $V\mbox{-cycle}$ optimality with Ruge-Stüben theory and Perron-Frobenius theorem.

Theorem (A. Aricò, D., and S. Serra-Capizzano, 2004) $TGM \Rightarrow V$ -cycle

$$\limsup_{x\to x^0} \left| \frac{p(y)^2}{f(x)} \right| = c < +\infty, \qquad \forall \, y \in \mathcal{M}(x),$$

[Multidimensional case A. Aricò and M. D., 2007]

Remark

This is equivalent to $\gamma_p \ge m$ ($\gamma_p + \gamma_r \ge 2m$) instead of $2\gamma_p > m$ ($\gamma_p + \gamma_r > m$). This condition is also necessary [A. Napov and Y. Notay, NM 2011].