# Ricostruzione di immagini con condizioni al contorno anti-riflettenti e metodi multigrid

# Marco Donatelli Ph.D. Thesis "Image deconvolution and multigrid methods"

Dipartimento di Fisica e Matematica Università dell'Insubria

http://scienze-como.uninsubria.it/mdonatelli/



## Outline

1 Ricostruzione di immagini sfuocate Matrice associata alla PSF Regolarizzazione

2 Condizioni al contorno Anti-riflettenti Proprietà strutturali Re-blurring Risultati numerici

Regolarizzazione Multigrid Regolarizzazione Multigrid iterativa Risultati numerici

4 Lavoro futuro



## Outline

- Ricostruzione di immagini sfuocate Matrice associata alla PSF Regolarizzazione
  - 2 Condizioni al contorno Anti-riflettenti Proprietà strutturali Re-blurring Risultati numerici
  - Regolarizzazione Multigrid Regolarizzazione Multigrid iterativa Risultati numerici
- 4 Lavoro futuro



# Il problema modello

L'immagine ricostruita **f** è ottenuta "risolvendo":

$$A\mathbf{f} = \mathbf{g}$$

- g = vec(G) dove G è
   immagine osservata = immagine sfuocata + rumore
- A = matrice bilivello associata alla point spread function (PSF).
- La PSF è l'osservazione di un singolo punto (e.g., una stella in astronomia) ed è assunta spazio invariante.



### Obiettivi della ricostruzione

#### Requisiti

- Buona qualità dell'immagine ricostruita
- Possibilità di ricondurre il calcolo a trasformate veloci stile FFT

#### Come soddisfare i requisiti

- Modellisticamente nella formalizzazione del problema
- 2 Computazionalmente nella definizione di metodi regolarizzanti



## Condizioni al contorno classiche

Condizioni al contorno classiche sull'immagine F di dimensione  $n \times n$ :

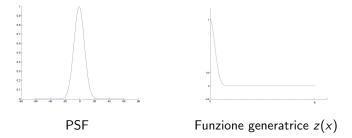
| zero-Dirichlet (D-BCs)  | Periodic (P-BCs) | Reflective (R-BCs)                                                                                                        |  |
|-------------------------|------------------|---------------------------------------------------------------------------------------------------------------------------|--|
| 0 0 0<br>0 F 0<br>0 0 0 | F                | $F_{rc}$ $F_r$ $F_{rc}$ $F_c$ $F$ $F_c$ $F_{rc}$ $F_r$ $F_{rc}$ $F_c$ , $F_r$ , $F_{rc}$ "flip" di colonne e/o righe di F |  |
| вттв вссв               |                  | Block $T + H$ with $T + H$ blocks (DCT-III bilivello)                                                                     |  |

- Il prodotto matrice vettore costa  $O(n^2 \log(n))$  ops,
- L'inversione costa  $O(n^2 \log(n))$  ops solo per P-BCs e DCT-III.



## Proprietà della PSF

• Gli autovalori di A(z) sono approssimativamente un campionamento uniforme della z.



 Il sottospazio malcondizionato è principalmente costituito dalle medie/alte frequenze.



# Regolarizzazione alla Tikhonov

- Tikhonov: Si risolvere

$$\min_{\mathbf{z} \in \mathbb{R}^N} \Big\{ \|A\mathbf{z} - \mathbf{g}\|_2^2 + \mu \|\mathbf{z}\|_2^2 \Big\},$$

ovvero il sistema lineare

$$(A^TA + \mu I)\mathbf{f} = A^T\mathbf{g}.$$

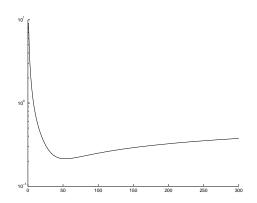


# Metodi iterativi regolarizzanti

#### Semiconvergenza:

Alcuni metodi iterativi (Landweber, CG, CGNE ...) hanno proprietà regolarizzanti: l'errore di ricostruzione prima descresce e poi crescere.

### Esempio:





## Outline

- Ricostruzione di immagini sfuocate Matrice associata alla PSF Regolarizzazione
- 2 Condizioni al contorno Anti-riflettenti Proprietà strutturali Re-blurring Risultati numerici
- 3 Regolarizzazione Multigrid Regolarizzazione Multigrid iterativa Risultati numerici
- 4 Lavoro futuro



## Definizione delle condizioni antiriflettenti

In ogni direzione si opera un'antiriflessione rispetto al bordo.

• In 1D l'antiriflessione si ottiene mediante

$$f_{1-j} = 2f_1 - f_{j+1}$$
  
 $f_{n+j} = 2f_n - f_{n-j}$ 

- Le R-BCs garantiscono la continuità al bordo mentre le condizioni al contorno antiriflettenti (AR-BCs) garantiscono la continuità anche della derivata normale.
- Proposta originale: S. SERRA CAPIZZANO, SIAM J. Sci. Comput., 25–4 (2004), pp. 1307–1325.
- Analisi 2D: M. Donatelli, C. Estatico, J. Nagy, L. Perrone, and S. Serra-Capizzano, SPIE's 48th Annual Meeting, 2003, San Diego, CA USA, F. Luk Ed, Vol. 5205 pp. 380-389.

# Proprietà strutturali (caso 1D)

#### PSF generica

- A = Toeplitz + Hankel + rango 2.
- Prodotto matrice-vettore in  $O(n \log(n))$  ops.

#### PSF fortemente simmetrica

• Per  $S \in \mathbb{R}^{(n-2)\times (n-2)}$  diagonalizzabile mediante DST-I

$$A = \left[ \begin{array}{cccc} 1 & & & & & \\ * & & & * & \\ \vdots & & S & & \vdots \\ * & & & * & \\ & & & 1 \end{array} \right]$$



# Algebra anti-riflettente 1D

$$S_1 = \left\{ M \middle| M = \begin{bmatrix} \alpha & \mathbf{0}^T & 0 \\ \mathbf{v} & \hat{M} & \mathbf{w} \\ 0 & \mathbf{0}^T & \beta \end{bmatrix}, \ \alpha, \beta \in \mathbb{R}, \ \mathbf{v}, \mathbf{w}, \mathbf{0} \in \mathbb{R}^{n-2}, \ \hat{M} \in \tau_{n-2} \right\}.$$

#### **Theorem**

Siano  $\mathbf{f}, \mathbf{g} \in \mathbb{R}^n$ , allora per  $M \in \mathcal{S}_1$ :

- (i) ogni sistema lineare  $M\mathbf{f} = \mathbf{g}$  può essere risolto in  $O(n \log(n))$  ops se M è invertibile;
- (ii) ogni prodotto matrice vettore  $\mathbf{g} := M\mathbf{f}$  costa  $O(n \log(n))$  ops;
- (iii)  $S_1$  è un algebra, i.e., è chiusa per combinazioni lineari, prodotti e inversione.

Caso multidimensionale si generalizza mediante prodotto tensore.



# Risultati preliminari

- Nel caso senza rumore le AR-BCs permettono una ricostruzione qualitativamente superiore rispetto alle altre BCs.
- Nel caso in cui sia presente anche il rumore è necessaria la regolarizzazione. Ad esempio CG applicato alle equazioni normali  $A^T A \mathbf{f} = A^T \mathbf{g}$  o Tikhonov.
- In tal caso le AR-BCs risultano peggiori delle altre BCs (almeno delle R-BCs).

#### Motivazione

Per PSF fortemente simmetrica con le altre BCs  $A^T = A$  mentre per le AR-BCs  $A^T \neq A$  e non è più un operatore di blur (filtro passa-basso).



# Re-blurring

Proposta: Sostituire  $A^T$  con A' ottenuta imponendo le condizioni al contorno alla PSF ruotata di  $180^\circ$ .

Con il re-blurring si risolve

$$A'A\mathbf{f} = A'\mathbf{g}$$

invece di  $A^T A \mathbf{f} = A^T \mathbf{g}$ .

#### Osservazione:

Il re-blurring sostituisce la transposizione con la correlazione



# L'origine del re-blurring

#### Il modello continuo della sfuocatura

$$g(x) = (Kf)(x) = \int k(x - y)f(y)dy$$

#### Equazioni normali

- 1 Discretizzazione ed imposizione delle condizioni al contorno
- 2 Ricerca di una soluzione ai minimi quadrati

### Re-blurring $(1 \leftrightarrow 2)$

- Ricerca di una soluzione ai minimi quadrati
- 2 Discretizzazione ed imposizione delle condizioni al contorno



# Proprietà algebriche

- Per le AR-BCs e PSF fortemente simmetrica si superano i problemi computazionali grazie all'algebra  $S_d$ .
- Caso 1D e PSF generica

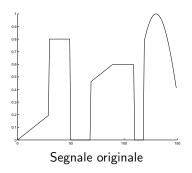
$$A' = JAJ$$

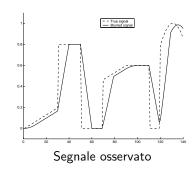
con J matrice di flip.

- Per T Toeplitz vale  $T^T = JTJ \Rightarrow$  per D-BCs e P-BCs il re-blurring è identico alle equazioni normali.
- Per H Hankel in generale  $H^T \neq JHJ \Rightarrow$  se la PSF non è almeno centro-simmetrica per le R-BCs il re-blurring è diverso dalle equazioni normali (per le AR-BCs sempre!).



# R-BCs: re-blurring vs. equazioni normali







# R-BCs: re-blurring vs. equazioni normali

#### Errore di ricostruzione relativo con R-BCs

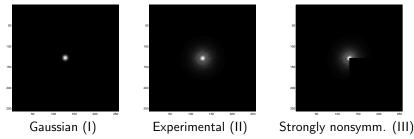
|                     | Normal Equations |          | Re-blurring |          |
|---------------------|------------------|----------|-------------|----------|
| SNR                 | CG               | Tikhonov | CG          | Tikhonov |
| $\infty$ (0% noise) | 0.0756           | 0.0753   | 0.0971      | 0.1041   |
| 100                 | 0.0889           | 0.1051   | 0.0969      | 0.1085   |
| 50                  | 0.1138           | 0.1315   | 0.0984      | 0.1179   |
| 40                  | 0.1233           | 0.1417   | 0.0996      | 0.1249   |
| 30                  | 0.1311           | 0.1534   | 0.1070      | 0.1334   |
| 20                  | 0.1399           | 0.1789   | 0.1300      | 0.1540   |
| 10                  | 0.1734           | 0.2278   | 0.1574      | 0.2000   |



## Risultati numerici con re-blurring

 Si è esteso un toolbox (RestoreTools) per Matlab sviluppato da J. Nagy et al. aggiungendo le AR-BCs.

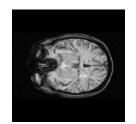
PSFs





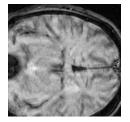
# Immagini originali















Boat

Brain

Saturn

# Boat e PSF (I): immagini ricostruite con SNR = 40.

Observed

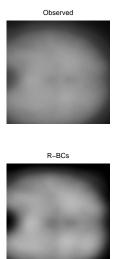


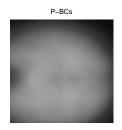


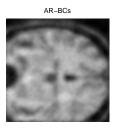




# Brain e PSF (II): immagini ricostruite con SNR = 40.



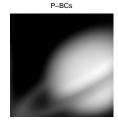


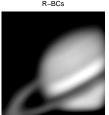


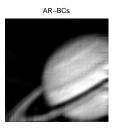


# Saturn e PSF (III): immagini ricostruite con SNR = 40.









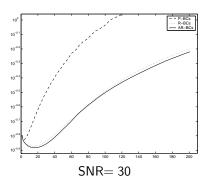


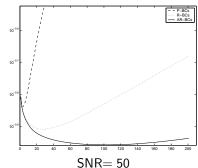
# Experimental PSF (II): CG errore di ricostruzione ottimo.

|          |        | Boat   |        |        | Saturn |        |
|----------|--------|--------|--------|--------|--------|--------|
| SNR      | P-BCs  | R-BCs  | AR-BCs | P-BCs  | R-BCs  | AR-BCs |
| $\infty$ | 0.2550 | 0.1849 | 0.1545 | 0.2594 | 0.2020 | 0.0959 |
| 50       | 0.2550 | 0.1872 | 0.1553 | 0.2594 | 0.2020 | 0.0961 |
| 40       | 0.2553 | 0.1897 | 0.1565 | 0.2595 | 0.2021 | 0.0988 |
| 30       | 0.2568 | 0.1962 | 0.1739 | 0.2610 | 0.2042 | 0.1226 |
| 20       | 0.2716 | 0.2311 | 0.2204 | 0.2730 | 0.2208 | 0.1736 |
| 10       | 0.3924 | 0.3770 | 0.3784 | 0.3773 | 0.3488 | 0.3337 |



# Errore di ricostruzione per le prime 200 iterazioni di CG per l'immagine Boat e PSF (I).







# Bibliografia

- Proposta re-blurring 1D (PSF simmetrica): M. DONATELLI AND S. SERRA CAPIZZANO, Anti-reflective boundary conditions and re-blurring, Inverse Problems, 21 (2005) pp. 169–182.
- Analisi ed estensione nonsimmetrica e multidimensionale: M.
  DONATELLI, C. ESTATICO, AND S. SERRA-CAPIZZANO, Improved
  image deblurring with anti-reflective boundary conditions and
  re-blurring, submitted.



## Outline

- Ricostruzione di immagini sfuocate Matrice associata alla PSF Regolarizzazione
- 2 Condizioni al contorno Anti-riflettent Proprietà strutturali Re-blurring Risultati numerici
- Regolarizzazione Multigrid Regolarizzazione Multigrid iterativa Risultati numerici
- 4 Lavoro futuro



# Multigrid

#### Idea Multigrid

Proiettare il sistema lineare in un sottospazio, risolvere il sistema risultante in tale sottospazio ed interpolare la soluzione al fine di migliorare l'approssimazione precedente.

#### Componenti del Multigrid

Il Multigrid combina due metodi iterativi:

Smoother: un metodo iterativo classio,

Coarse Grid Correction: proiezione, risoluzione del problema ristretto, interpolazione.

Ai livelli inferiori si lavora sull'equazione dell'errore!



# Multigrid per matrici strutturate

#### Preservare la struttura

- Per applicare ricorsivamente il MGM è necessario preservare la stessa struttura ad ogni livello (Toeplitz, ...).
- Per ogni struttura derivante dalle BCs proposte esistono proiettori in grado di preservare la struttura.

$$\mathbf{P}_i = K_{N_i} \mathcal{A}_{N_i}(p)$$
:

- $K_{N_i} \in \mathbb{R}^{\frac{N_i}{4} \times N_i}$  è la matrice di taglio che preserva la struttura al livello inferiore.
- p(x, y) è la funzione generatrice del proiettore che seleziona il sottospazio dove proiettare il sistema lineare.



# Regolarizzazione Multigrid

- Nella ricostruzione di immagini sfuocate il sottospazio malcondizionato è generato dalle alte frequenze, mentre il sottospazio bencondizionato è generato dalle basse frequenze.
- Per ottenere un risolutore veloce il multigrid algebrico proietta nelle alte frequenze dove "vive" il rumore ⇒ esplosione dell'errore alle prime iterazioni (richiede regolarizzazione alla Tikhonov [Donatelli, NLAA, 12 (2005), pp. 715–729]).
- Filtro passa-basso proietta nel sottospazio bencondizionato (basse frequenze) ⇒ converge lentamente ma può essere un buon metodo iterativo regolarizzante [Donatelli & Serra-Capizzano SISC 27–6 (2006) pp. 2053–2076].



#### Regolarizzazione Multigrid Regolarizzaz

#### Il Multigrid come metodo iterativo regolarizzante

Regolarizzazione Multigrid iterativa

Se abbiamo un *metodo iterativo regolarizzante* possiamo migliorare le sue proprietà di regolarizzazione e/o accelerare la sua convergenza utilizzandolo come *smoother* in un algoritmo Multigrid.

#### Regolarizzazione

Le proprietà regolarizzanti dello smoother sono preservate perchè viene combinato con un filtro passa-basso.



# Regolarizzazione Two-Level (TL)

Idea: proiettare nelle basse frequenze e poi applicare un metodo iterativo regolarizzante.

#### TL come specializzazione del TGM

Smoother: metodo iterativo regolarizzante

Proiettore: filtro passa-basso

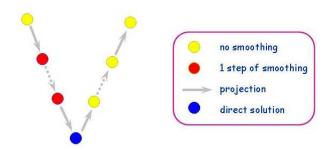
#### Algoritmo TL

- No smoothing al livello superiore.
- Al livello inferiore un passo di smoother invece di risolvere direttamente il sistema lineare.



# Regolarizzazione Multigrid (applica ricorsivamente il TL)

#### V-cycle



Utilizzando un numero maggiore di chiamate ricorsive (e.g. W-cycle), l'algoritmo "lavora" maggiormente nel sottospazio bencondizionato, ma è più difficile un criterio di stop anticipato.

# Costo computazionale

#### Ipotesi: immagini $n \times n$ e PSFs $m \times m$ con $m \ll n$ .

- Sia S(n) il costo computazionale di una iterazione di smoother.
- Il costo computazionale di una iterazione del nostro multigrid regolarizzante ( $\gamma=$  n. chiamate ricorsive) è

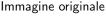
$$C(\gamma, n) \approx \left\{ egin{array}{ll} rac{1}{3}S(n), & \gamma = 1 \\ S(n), & \gamma = 2 \\ 3S(n), & \gamma = 3 \end{array} 
ight.$$



#### Saturno

- BCs Periodiche con bordo nero (esatte)
- PSF gaussiana + SNR = 20
- Vincolo di nonnegatività





**PSF** 

Sfuocata + SNR = 20



#### Errore Minimo

 $e_j$  = errore di ricostruzione alla j-esima iterazione.

| METODO                                 | $\min_{j=1,}(e_j)$ | $\underset{j=1,}{\operatorname{argmin}}(e_j)$ |
|----------------------------------------|--------------------|-----------------------------------------------|
| CG <sup>+</sup>                        | 0.2268             | 4                                             |
| Rich <sup>+</sup>                      | 0.2298             | 9                                             |
| MGM(Rich <sup>+</sup> ,1) <sup>+</sup> | 0.1556             | 27                                            |
| MGM(Rich <sup>+</sup> ,2) <sup>+</sup> | 0.1530             | 12                                            |
| RichNE <sup>+</sup>                    | 0.1419             | 2735                                          |
| CGNE <sup>+</sup>                      | 0.1419             | 885                                           |
| MGM(CGNE <sup>+</sup> ,2) <sup>+</sup> | 0.1389             | 109                                           |



# Immagini Ricostruite



 $\mathsf{Rich}^+$  (9 iter.)



MGM(Rich<sup>+</sup>,2)<sup>+</sup> (12 iter.)



CGNE<sup>+</sup> (885 iter.)



# Immagini Ricostruite



MGM(CGNE<sup>+</sup>,2)<sup>+</sup> (109 iter.)



MGM(Rich<sup>+</sup>,2)<sup>+</sup> (12 iter.)



CGNE<sup>+</sup> (885 iter.)



## Numerical results

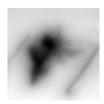
- P-BCs
- Gaussian PSF (A spd)
- noise = 1%



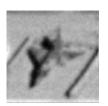
True image



Inner part  $128 \times 128$ 



Observed image

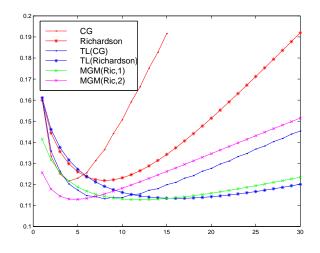


Restored with MGM



## Restoration error: noise = 1%

#### Restoration error vs. iteration number





## Outline

- Ricostruzione di immagini sfuocate Matrice associata alla PSF Regolarizzazione
- 2 Condizioni al contorno Anti-riflettenti Proprietà strutturali Re-blurring Risultati numerici
- Regolarizzazione Multigrid Regolarizzazione Multigrid iterativa Risultati numerici
- 4 Lavoro futuro



#### Lavoro futuro

#### Modellistico

- Analisi teorica della strategia di re-blurring.
- In generale (per riflettenti o anti-riflettenti) A'A non è sempre s.p.d. ma il CG non ha break-down (almeno in tutti i nostri test).
- Calcolo della decomposizione spettrale per le AR-BCs e sue applicazioni.

### Regolarizzazione multigrid

- Analisi teorica delle proprietà regolarizzanti del multigrid regolarizzante proposto.
- Combinazione del multigrid regolarizzante con tecniche di edge enhancing (e.g. wavelets).

