Regularization by preconditioning

C. Estatico

Dipartimento di Matematica e Informatica, Università degli Studi di Cagliari (estatico@unica.it)

In this talk, we discuss some preconditioning techniques for the regularization of ill-posed problems. In particular, we first identify a set of approximation processes which regularizes the inversion of real functions. Then, such processes are used as a basic tool for the computation of preconditioners endowed with regularizing properties. We show that these preconditioners provide fast convergence and noise control of iterative methods for discrete ill-posed and structured linear systems.

The regularization properties of the preconditioning techniques are assessed by means of several image deblurring numerical tests.

Bibliography

F. Di Benedetto, C. Estatico and S. Serra Capizzano, Superoptimal preconditioned conjugate gradient iteration for image deblurring, *SIAM J. Sci. Comp.*, 26:1012–1035 (2005).

F. Di Benedetto and S. Serra Capizzano, A note on the superoptimal matrix algebra operators, *Linear Multilin. Algebra*, 50:343–372 (2002).

M. Donatelli, C. Estatico, A. Martinelli, S. Serra Capizzano, Improved image deblurring with anti-reflective boundary conditions and re-blurring, *Inverse Problems*, 22:2035– 2053 (2006).

C. Estatico, A class of filtering superoptimal preconditioners for highly ill-conditioned linear systems, *BIT*, 42:753–778 (2002).

C. Estatico, Regularization processes for real functions and ill-posed Toeplitz problems, in "Recent Advances in Operator Theory and Its Applications", M. Kaashoek, C. van der Mee, S. Seatzu (Eds.), Birkhuser Verlag, *Operator Theory: Advances and Applications*, 160:161–178 (2005).

C. Estatico, Preconditioners for ill-conditioned Toeplitz matrices with differentiable generating functions, *Numer. Linear Algebra Appl.*, 16:237–257 (2009).

S. Serra Capizzano, Toeplitz preconditioners constructed from linear approximation processes, SIAM J. Matrix Anal. Appl., 20:446–465 (1998).

E. E. Tyrtyshnikov, A. Yu. Yeremin and N. L. Zamarashkin, Clusters, Preconditioners, Convergence, *Linear Algebra Appl.*, 263:25–48 (1997).