Anomalous Drell-Yan asymmetry from hadronic or QCD vacuum effects

Daniël Boer Free University, Amsterdam

Outline

- \bullet Anomalously large $\langle \cos(2\phi) \rangle$ asymmetry in Drell-Yan
- A QCD vacuum effect?
- A hadronic effect?
- Similarities and differences
- Conclusions

Azimuthal asymmetries in Drell-Yan in theory

$$\frac{1}{\sigma}\frac{d\sigma}{d\Omega} \propto \left(1 + \lambda\cos^2\theta + \mu\sin2\theta\,\cos\phi + \frac{\nu}{2}\sin^2\theta\cos2\phi\right)$$

Parton Model $\mathcal{O}(\alpha_s^0)$ $\lambda = 1, \ \mu = \nu = 0$ LO pQCD $\mathcal{O}(\alpha_s^1)$ $1 - \lambda - 2\nu = 0$ Lam-Tung relationNLO $\mathcal{O}(\alpha_s^2)$ $1 - \lambda - 2\nu \neq 0$ small and positive

Azimuthal asymmetries in Drell-Yan in experiment

Data from NA10 Collab. ('86/'88) & E615 Collab. ('89)

Data for $\pi^- N \rightarrow \mu^+ \mu^- X$, with N = D, Wwith π^- -beams of 140-286 GeV lepton pair invariant mass $Q \sim 4 - 12$ GeV

NA10: $-(1 - \lambda - 2\nu) \approx 0.6$ at $|\mathbf{k}_T| \sim 2 - 3$ GeV E615: see figure

Large deviation from Lam-Tung relation

Order of magnitude larger & opposite sign w.r.t. $\mathcal{O}(\alpha_s^2)$ pQCD result

NA10 data, ZPC 37 ('88) 545

Explanations of large deviation from Lam-Tung relation

Unlikely explanations:

- NNLO corrections
- Higher twist effect ($Q\sim 4-12$ GeV and $\mupprox 0$, as opposed to expected $\mu>
 u$)
- Nuclear effect (although $\sigma(\mathbf{k}_T)_W / \sigma(\mathbf{k}_T)_D$ is an increasing function of \mathbf{k}_T , $\nu(\mathbf{k}_T)$ shows no apparent nuclear dependence)

Possible explanations to be discussed:

- QCD vacuum effect Brandenburg, Nachtmann & Mirkes, ZPC 60 ('93) 697
- Hadronic effect D.B., PRD 60 ('99) 014012

Recent comparative study D.B., Brandenburg, Nachtmann & Utermann, EPJC 40 ('05) 55

Usually the DY process at $Q \sim 4 - 12 \text{ GeV}$ is described by collinear factorization

Collinear quarks inside unpolarized hadrons are unpolarized themselves

$$\rho^{(q,\bar{q})} = \frac{1}{4} \{ \mathbf{1} \otimes \mathbf{1} \}$$

The QCD vacuum may alter this The gluon condensate leads to a chromomagnetic field strength

 $\langle g^2 \boldsymbol{B}^a(x) \cdot \boldsymbol{B}^a(x) \rangle \approx (700 \,\mathrm{MeV})^4$

Savvidy; Shifman, Vainshtein, Zakharov; ...

Fluctuating domain structure of the vacuum with correlation length $a \approx 0.35$ fm

Time for traversing such a vacuum domain: $t \approx a$

Transverse polarization is built up due to the Sokolov-Ternov effect:

$$t \propto \frac{m_q^5}{|g \boldsymbol{B}_T|^3 \gamma^2} \Longrightarrow t \ll a$$

Nachtmann & Reiter, ZPC 24 ('84) 283 Botz, Haberl & Nachtmann, ZPC 67 ('95) 143

For an isolated hadron the radiated gluons/photons are just fluctuations of the cloud of virtual particles; they are included in the wave function

On average no quark polarization, but ...

The QCD vacuum can induce a spin correlation between an annihilating $q\,\bar{q}$

The spin density matrix becomes:

$$\rho^{(q,\bar{q})} = \frac{1}{4} \{ \mathbf{1} \otimes \mathbf{1} + F_j \, \boldsymbol{\sigma}_j \otimes \mathbf{1} + G_j \, \mathbf{1} \otimes \boldsymbol{\sigma}_j + H_{ij} \, \boldsymbol{\sigma}_i \otimes \boldsymbol{\sigma}_j \}$$

If $H_{ij} = F_i G_j$, then the spin density matrix factorizes

$$ho^{(q,ar q)} = rac{1}{2} \left\{ \mathbf{1} + F_j \, oldsymbol \sigma_j
ight\} \otimes rac{1}{2} \left\{ \mathbf{1} + G_j \, oldsymbol \sigma_j
ight\}$$

Brandenburg, Nachtmann & Mirkes (ZPC 60 ('93) 697) demonstrated that

 $H_{ii} \neq 0 \implies \langle \cos(2\phi) \rangle \neq 0$

More specifically,

$$\kappa \equiv -\frac{1}{4}(1 - \lambda - 2\nu) \approx \left\langle \frac{H_{22} - H_{11}}{1 + H_{33}} \right\rangle$$

A simple dependence of $(H_{22} - H_{11})/(1 + H_{33})$ on $|{m k}_T|$ could fit the data very well

$$\kappa = \kappa_0 \frac{|\boldsymbol{k}_T|^4}{|\boldsymbol{k}_T|^4 + m_T^4}, \quad \kappa_0 = 0.17, \quad m_T = 1.5 \text{ GeV}$$

Note that for large $|\mathbf{k}_T|$: $\kappa \to \kappa_0$, a constant value

In other words, the vacuum effect could persist out to large values of $|{m k}_T|$

Explanation as a hadronic effect

Assume that factorization of soft and hard energy scales *implies* factorization of the spin density matrices

But drop assumption of collinear factorization, i.e. allow for TMDs

 $h_1^{\perp} \neq 0 \implies$ deviation from Lam-Tung relation

 $h_1^{\perp} \neq 0$ offers a parton model explanation of NA10 data ($\lambda = 1, \mu = 0$):

$$\kappa = \frac{\nu}{2} \propto h_1^{\perp}(\pi) h_1^{\perp}(N)$$

Explaining the unpolarized DY data

Not only fit, but also model calculations of h_1^{\perp} and asymmetries have been performed Goldstein & Gamberg, hep-ph/0209085; D.B., Brodsky & Hwang, PRD 67 ('03) 054003 Lu & Ma, PRD 70 ('04) 094044 & hep-ph/0504184

TM dependence beyond the parton model

At large Q_T hard gluon radiation (to first order in α_s) gives rise to

$$\nu(Q_T) = \frac{Q_T^2}{Q^2 + \frac{3}{2}Q_T^2}$$

Collins, PRL 42 ('79) 291

Impression of small and large Q_T contributions (at Q = 8 GeV) to ν compared to DY data of NA10 ('88)

Therefore, in order to use the behavior of ν at large Q_T to differentiate between effects, it is necessary to subtract the calculable pQCD contributions At higher orders in α_s this is also necessary for κ (Mirkes & Ohnemus, PRD 51 (1995) 4891)

Q^2 dependence beyond the parton model

The Q^2 dependence of the vacuum effect is not known

At fixed Q_T the contribution from hard gluon radiation decreases as $1/Q^2$

The effect of resumming soft gluon radiation on the h_1^{\perp} contribution to ν (and κ):

Using the Q^2 dependence of ν (or κ) to differentiate between effects is not feasible (yet)

Factorization and universality

Nonzero h_1^{\perp} gives rise to a factorized product of spin density matrices

$$\rho^{(q,\bar{q})} = \rho^{(q)} \otimes \rho^{(\bar{q})}$$

$$\rho^{(q)} = \frac{1}{2} \left\{ \mathbf{1} + \frac{h_1^{\perp}}{f_1} \frac{x_1}{M_1} (\mathbf{e}_3 \times \mathbf{p}_1) \cdot \boldsymbol{\sigma} \right\} \equiv \frac{1}{2} \left\{ \mathbf{1} + F_j \, \boldsymbol{\sigma}_j \right\}$$

$$\rho^{(\bar{q})} = \frac{1}{2} \left\{ \mathbf{1} - \frac{\bar{h}_1^{\perp}}{\bar{f}_1} \frac{x_2}{M_2} (\mathbf{e}_3 \times \mathbf{p}_2) \cdot \boldsymbol{\sigma} \right\} \equiv \frac{1}{2} \left\{ \mathbf{1} + G_j \, \boldsymbol{\sigma}_j \right\}$$

Therefore, $H_{ij} = F_i G_j$, but in addition, this implies $H_{33} = 0$

Unfortunately it is hard to observe the difference between $H_{33} = 0$ and $H_{33} \neq 0$

Factorization shows itself via consistency among various processes (universality) Complications have recently been addressed, beyond Collins' $(h_1^{\perp})_{\text{DIS}} = -(h_1^{\perp})_{\text{DY}}$ Bacchetta, Bomhof, Mulders, Pijlman, hep-ph/0505268

Hadronic effect versus vacuum effect

	$h_1^\perp \neq 0$	QCD vacuum effect
$ ho^{(q,ar q)}$	$ ho^{(q)}\otimes ho^{(ar q)}$	possibly entangled
Q dependence	$\kappa \sim 1/Q$?
$ oldsymbol{k}_T ightarrow \infty$	$\kappa \to 0$	need not disappear $(\kappa ightarrow \kappa_0)$
flavor dependence	yes	flavor blind
x dependence	yes	yes, but flavor blind

Different experiments ($\pi^{\pm}, p, \bar{p}, \ldots$ beams) are needed in different kinematical regimes

Polarized beams can also help (SSA $\sim h_1 h_1^{\perp}$)

The polarized Drell-Yan process

In the case of one transversely polarized hadron:

$$\frac{d\sigma}{d\Omega \ d\phi_S} \propto 1 + \cos^2 \theta + \sin^2 \theta \left[\frac{\nu}{2} \ \cos 2\phi - \rho \ |\boldsymbol{S}_T| \ \sin(\phi + \phi_S)\right] + \dots$$

Assuming *u*-quark dominance and Gaussian TM dependence for h_1^{\perp} :

Data to test h_1^{\perp} hypothesis

Possible future DY data

RHIC: can measure ν and $\rho \Longrightarrow$ information on h_1^{\perp} and h_1

Also provides information on flavor dependence $(p p \text{ versus } \pi p)$ Fermilab: ν in $p \bar{p} \rightarrow \mu^+ \mu^- X$ (advantage of \bar{p} : valence anti-quarks, like π) GSI: future PANDA (ν) and PAX (ρ) experiments $p \bar{p} \rightarrow l^+ l^- X$ But at considerably lower energies ($\sqrt{s} \sim 7 - 14$ GeV), so HT becomes important

Semi-inclusive DIS

The $\langle \cos 2\phi \rangle$ in $e \, p
ightarrow e' \, \pi \, X$ would be $\propto h_1^\perp H_1^\perp$

Gamberg, Goldstein & Oganessyan, PRD 67 ('03) 071504; PRD 68 ('03) 051501 Amrath, Bacchetta, Metz, PRD 71 (2005) 114018 [review of model calculations of H_1^{\perp}]

Conclusions

- $q^{\uparrow}\bar{q}^{\uparrow} \rightarrow \gamma^*$ leads to $\langle \cos(2\phi) \rangle$ asymmetry in DY lepton-pair angular distribution
- Such a spin correlation can arise from QCD vacuum or noncollinear partons
- Flavor dependence would favor a hadronic effect
- Persistence of the asymmetry at large $|\mathbf{k}_T|$ and Q favors a vacuum effect

Hopefully the future will tell whether the anomalous Drell-Yan asymmetry comes from factorizing hadronic effects or possibly nonfactorizing QCD vacuum effects

Instanton model

"Instanton induced azimuthal spin asymmetry in DIS", Ostrovsky & Shuryak, PRD 71 ('05) 014037 "The Pauli form factor of the quark induced by instantons", Kochelev, PLB 565 ('03) 131

The general $n_f = 3$ case (and $n_g \neq 0$) is non-factorizing, e.g.

But perhaps suppressed (like higher twist)

Instanton model

