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Outline

GPDs: probabilistic interpretation as Fourier transforms of impact
parameter dependent PDFs

H(x, 0,−∆2
⊥) −→ q(x,b⊥)

H̃(x, 0,−∆2
⊥

) −→ ∆q(x,b⊥)

E(x, 0,−∆2
⊥

)

→֒⊥ deformation of unpol. PDFs in ⊥ pol. target
Sivers effect

2H̃T + ET −→⊥ deformation of ⊥ pol. PDFs in unpol. target
correlation between quark angular momentum and quark
transversity
Boer-Mulders function h⊥

1 (x,k⊥)

Summary
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Generalized Parton Distributions (GPDs)

GPDs: decomposition of form factors at a given value of t, w.r.t. the
average momentum fraction x = 1

2 (xi + xf ) of the active quark

∫

dxHq(x, ξ, t) = F
q
1 (t)

∫

dxH̃q(x, ξ, t) = G
q
A(t)

∫

dxEq(x, ξ, t) = F
q
2 (t)

∫

dxẼq(x, ξ, t) = G
q
P (t),

xi and xf are the momentum fractions of the quark before and
after the momentum transfer
2ξ = xf − xi

formal definition (unpol. quarks):

∫

dx−

2π
eix−p̄+x

〈

p′
∣

∣

∣

∣

q̄

(

−
x−

2

)

γ+q

(

x−

2

)
∣

∣

∣

∣

p

〉

= H(x, ξ, ∆2)ū(p′)γ+u(p)

+E(x, ξ, ∆2)ū(p′)
iσ+ν∆ν

2M
u(p)

GPDs and SSA – p.3/25



Generalized Parton Distributions (GPDs)

in the limit of vanishing t and ξ, the nucleon non-helicity-flip GPDs
must reduce to the ordinary PDFs:

Hq(x, 0, 0) = q(x) H̃q(x, 0, 0) = ∆q(x).

GPDs are form factor for only those quarks in the nucleon carrying
a certain fixed momentum fraction x

→֒ t dependence of GPDs for fixed x, provides information on the
position space distribution of quarks carrying a certain momentum
fraction x
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Form Factors vs. GPDs

operator

q̄γ+q

∫

dx−eixp+x−

4π q̄
(

−x−

2

)

γ+q
(

x−

2

)

forward
matrix elem.

Q

q(x)

off-forward
matrix elem.

F (t)

H(x, ξ, t)

position space

ρ(~r)

?
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Form Factors vs. GPDs

operator

q̄γ+q

∫

dx−eixp+x−

4π q̄
(

−x−

2

)

γ+q
(

x−

2

)

forward
matrix elem.

Q

q(x)

off-forward
matrix elem.

F (t)

H(x, 0, t)

position space

ρ(~r)

q(x,b⊥)

q(x,b⊥) = impact parameter dependent PDF
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Impact parameter dependent PDFs

define state that is localized in ⊥ position:
[D.Soper,PRD15, 1141 (1977)]

∣

∣p+,R⊥ = 0⊥, λ
〉

≡ N

∫

d2p⊥

∣

∣p+,p⊥, λ
〉

Note: ⊥ boosts in IMF form Galilean subgroup⇒ this state has
R⊥ ≡

1
P+

∫

dx−d2x⊥ x⊥T++(x) =
∑

i xiri,⊥ = 0⊥

(cf.: working in CM frame in nonrel. physics)

define impact parameter dependent PDF

q(x,b⊥) ≡

∫

dx−

4π

〈

p+,R⊥ = 0⊥

∣

∣ q̄(−
x−

2
,b⊥)γ+q(

x−

2
,b⊥)

∣

∣p+,R⊥ = 0⊥

〉

eixp+x−
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GPDs←→ q(x,b⊥)

nucleon-helicity nonflip GPDs can be related to distribution of
partons in ⊥ plane

q(x,b⊥) =
∫

d2
∆⊥

(2π)2 ei∆⊥·b⊥H(x, 0,−∆2
⊥

)

∆q(x,b⊥) =
∫

d2
∆⊥

(2π)2 ei∆⊥·b⊥H̃(x, 0,−∆2
⊥

)

no rel. corrections to this result! (Galilean subgroup of ⊥ boosts)

q(x,b⊥) has probabilistic interpretation , e.g.

q(x,b⊥) ≥ |∆q(x,b⊥)| ≥ 0 for x > 0

q(x,b⊥) ≤ − |∆q(x,b⊥)| ≤ 0 for x < 0
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GPDs←→ q(x,b⊥)

b⊥ distribution measured w.r.t. RCM
⊥
≡

∑

i xiri,⊥

→֒ width of the b⊥ distribution should go to zero as x→ 1, since
the active quark becomes the ⊥ center of momentum in that limit!
→֒ H(x, 0,−∆2

⊥
) must become ∆2

⊥
-indep. as x→ 1. Confirmed

by recent lattice studies (QCDSF, LHPC)

Anticipated shape of q(x,b⊥):
large x: quarks from localized valence ‘core’,
small x: contributions from larger ‘ meson cloud’
→֒ expect a gradual increase of the t-dependence (⊥ size) of
H(x, 0, t) as x decreases
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q(x,b⊥) in a simple model
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Transversely Distorted Distributions and E(x, 0,−∆2
⊥)

M.B., Int.J.Mod.Phys.A18, 173 (2003)

So far: only unpolarized (or long. pol.) nucleon! In general (ξ = 0):

∫

dx−

4π eip+x−x 〈P+∆,↑|q̄(0) γ+q(x−)|P,↑〉 = H(x,0,−∆2
⊥

)
∫

dx−

4π eip+x−x 〈P+∆,↑|q̄(0) γ+q(x−)|P,↓〉 = −∆x−i∆y

2M E(x,0,−∆2
⊥

).

Consider nucleon polarized in x direction (in IMF)
|X〉 ≡ |p+,R⊥ = 0⊥, ↑〉+ |p+,R⊥ = 0⊥, ↓〉.

→֒ unpolarized quark distribution for this state:

q(x,b⊥) = H(x,b⊥)−
1

2M

∂

∂by

∫

d2∆⊥

(2π)2
E(x, 0,−∆2

⊥)e−ib⊥·∆⊥

Physics: j+ = j0 + j3, and left-right asymmetry from j3 !
[X.Ji, PRL 78, 610 (2003)]
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Intuitive connection with ~Lq

Electromagnetic interaction couples to vector current. Due to
kinematics of the DIS-reaction (and the choice of coordinates —
ẑ-axis in direction of the momentum transfer) the virtual photons
“see” (in the Bj-limit) only the j+ = j0 + jz component of the quark
current

If up-quarks have positive orbital angular momentum in the
x̂-direction, then jz is positive on the +ŷ side, and negative on the
−ŷ side

~pγ
ẑ

ŷ
jz > 0

jz < 0
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Intuitive connection with ~Lq

Electromagnetic interaction couples to vector current. Due to
kinematics of the DIS-reaction (and the choice of coordinates —
ẑ-axis in direction of the momentum transfer) the virtual photons
“see” (in the Bj-limit) only the j+ = j0 + jz component of the quark
current

If up-quarks have positive orbital angular momentum in the
x̂-direction, then jz is positive on the +ŷ side, and negative on the
−ŷ side

→֒ j+ is distorted not because there are more quarks on one side
than on the other but because the DIS-photons (coupling only to
j+) “see” the quarks on the +ŷ side better than on the −ŷ side (for
Lx > 0).
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Transversely Distorted Distributions and E(x, 0,−∆2
⊥)

q(x,b⊥) in ⊥ polarized nucleon is distorted compared to
longitudinally polarized nucleons !

mean ⊥ displacement of flavor q (⊥ flavor dipole moment)

dq
y ≡

∫

dx

∫

d2b⊥qX(x,b⊥)by =
1

2M

∫

dxEq(x, 0, 0) =
κp

q

2M

with κ
p
u/d ≡ F

u/d
2 (0) = O(1− 2) ⇒ dq

y = O(0.2fm)

simple model: for simplicity, make ansatz where Eq ∝ Hq

Eu(x, 0,−∆2
⊥) =

κp
u

2
Hu(x, 0,−∆2

⊥)

Ed(x, 0,−∆2
⊥) = κ

p
dHd(x, 0,−∆2

⊥)

with κp
u = 2κp + κn = 1.673 κ

p
d = 2κn + κp = −2.033.

Model too simple but illustrates that anticipated distortion is very
significant since κu and κd known to be large!
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x = 0.5x = 0.5

x = 0.3x = 0.3

bx

by

bx

by

bx

by

bx

by

bx

by

bx

by

x = 0.1x = 0.1

u(x,b⊥) uX(x,b⊥)

x = 0.5x = 0.5

x = 0.3x = 0.3

bx

by

bx

by

bx

by

bx

by

bx

by

bx

by

x = 0.1x = 0.1

d(x,b⊥) dX(x,b⊥)
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GPD←→ SSA (Sivers)

Sivers: distribution of unpol. quarks in ⊥ pol. proton

fq/p↑(x,k⊥) = f
q
1 (x,k2

⊥)− f
⊥q
1T (x,k2

⊥)
(P̂× k⊥) · S

M

without FSI, 〈k⊥〉 = 0, i.e. f
⊥q
1T (x,k2

⊥
) = 0

with FSI, 〈k⊥〉 6= 0 (Brodsky, Hwang, Schmidt)

FSI formally included by appropriate choice of Wilson line gauge
links in gauge invariant def. of q(x,k⊥)

→֒ Qiu, Sterman; Collins; Ji; Boer et al.;..

〈k⊥〉 ∼

〈

P, S

∣

∣

∣

∣

q̄(0)γ+

∫ ∞

0

dη−G+⊥(η)q(0)

∣

∣

∣

∣

P, S

〉

∫ ∞

0
dη−G+⊥(η) is the ⊥ impulse that the active quark acquires

as it moves through color field of “spectators”

What should we expect for Sivers effect in QCD ? GPDs and SSA – p.16/25



GPD←→ SSA (Sivers)

example: γp→ πX (Breit frame)

~pγ ~pN d

u

π+

u, d distributions in ⊥ polarized proton have left-right asymmetry in
⊥ position space (T-even!); sign determined by κu & κd

attractive FSI deflects active quark towards the center of
momentum

→֒ FSI translates position space distortion (before the quark is
knocked out) in +ŷ-direction into momentum asymmetry that
favors −ŷ direction

→֒ correlation between sign of κq and sign of SSA: f
⊥q
1T ∼ −κq

f
⊥q
1T ∼ −κq consistent with HERMES results
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GPD←→ SSA (Sivers); formal argument

treat FSI to lowest order in g

→֒
〈

ki
q

〉

= −
g

4p+

∫

d2b⊥

2π

bi

|b⊥|
2

〈

p, s

∣

∣

∣

∣

q̄(0)γ+ λa

2
q(0)ρa(b⊥)

∣

∣

∣

∣

p, s

〉

with ρa(b⊥) =
∫

dr−ρa(r−,b⊥) summed over all quarks and
gluons

→֒ SSA related to dipole moment of density-density correlations

GPDs (N polarized in +x̂ direction): u −→ +ŷ and d −→ −ŷ

→֒ expect density density correlation to show same asymmetry
〈byū(0)γ+ λa

2 u(0)ρa(b⊥)〉 > 0

→֒ sign of SSA opposite to sign of distortion in position space
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Chirally Odd GPDs

∫

dx−

2π eixp+x−
〈

p′
∣

∣

∣
q̄
(

−x−

2

)

σ+jγ5q
(

x−

2

)
∣

∣

∣
p
〉

= HT ūσ+jγ5u + H̃T ū
ε+jαβ∆αPβ

M2 u

+ET ū
ε+jαβ∆αγβ

2M u + ẼT ū
ε+jαβPαγβ

M u

See also M.Diehl+P.Hägler, hep-ph/0504175.

Fourier trafo of 2H̃q
T + E

q
T for ξ = 0 describes distribution of

transversity for unpolarized target in ⊥ plane

qi(x,b⊥) =
εij

2M

∂

∂bj

∫

d2∆⊥

(2π)2
eib⊥·∆⊥

[

2H̃q
T (x, 0,−∆2

⊥) + E
q
T (x, 0,−∆2

⊥)
]

origin: correlation between quark spin (i.e. transversity) and
angular momentum

angular momentum J i
q carried by quarks with transverse spin sj in

an unpolarized target

〈J i
q(s

j)〉 =
δij

4

∫

dx
[

2H̃T (x, 0, 0) + ET (x, 0, 0)
]
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Chirally Odd GPDs

J i = 1
2εijk

∫

d3x
[

T 0jxk − T 0kxj
]

→֒ 〈Jy〉 =
∫

d3x 〈T++ · x〉

T++
q = q̄γ+

↔

D+ q =
∑

±sy
T++

q,sy
diagonal in transversity

→֒ consider angular momentum carried by quarks of given
transversity

〈

Jy
q,sy

〉

=

∫

d3x
〈

T++
q,sy
· x

〉

one can derive analog to Ji’s sum rule

〈

Jy
q,sy

〉

=
1

2

∫

dx
[

2H̃T (x, 0, 0) + ET (x, 0, 0)
]

x

(unpol target)

→֒ correlation between quark transversity and quark angular
momentum)
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Transversity Distribution in Unpolarized Target
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Boer-Mulders function

attractive FSI expected to convert position space asymmetry into
momentum space asymmetry

→֒ e.g. quarks at negative bx with spin in +ŷ get deflected (due to
FSI) into +x̂ direction

→֒ (qualitative) connection between Boer-Mulders function h⊥
1 (x,k⊥)

and the chirally odd GPD 2H̃T + ET that is similar to (qualitative)
connection between Sivers function f⊥

1T (x,k⊥) and the GPD E.

Boer-Mulders: distribution of ⊥ pol. quarks in unpol. proton

fq↑/p(x,k⊥) =
1

2

[

f
q
1 (x,k2

⊥)− h
⊥q
1 (x,k2

⊥)
(P̂× k⊥) · Sq

M

]
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Transversity Distribution in Unpolarized Target

attractive FSI expected to convert position space asymmetry into
momentum space asymmetry

→֒ e.g. quarks at negative bx with spin in +ŷ get deflected (due to
FSI) into +x̂ direction

→֒ (qualitative) connection between Boer-Mulders function h⊥
1 (x,k⊥)

and the chirally odd GPD 2H̃T + ET that is similar to (qualitative)
connection between Sivers function f⊥

1T (x,k⊥) and the GPD E.

→֒ qualitative predictions for h⊥
1 (x,k⊥)

sign of h⊥
1 opposite to sign of 2H̃T + ET

“ h⊥
1

2H̃T +ET
≈ f⊥

1T

E ”

use measurement of h⊥
1 to learn about spin-orbit correlation in

nucleon wave function

use LGT calcs. of 2H̃T + ET to make qualitative prediction for h⊥
1
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Summary

GPDs provide decomposition of form factors w.r.t. the momentum
of the active quark

∫

dx−

2π
eixp+x−

〈

p′
∣

∣

∣

∣

q̄

(

−
x−

2

)

γ+q

(

x−

2

)∣

∣

∣

∣

p

〉

GPDs resemble both PDFs and form factors: defined through
matrix elements of light-cone correlator, but ∆ ≡ p′ − p 6= 0.

t-dependence of GPDs at ξ=0 (purely ⊥ momentum transfer)⇒
Fourier transform of impact parameter dependent PDFs q(x,b⊥)

→֒ knowledge of GPDs for ξ = 0 provides novel information about
nonperturbative parton structure of nucleons: distribution of
partons in ⊥ plane

q(x,b⊥) =
∫

d2
∆⊥

(2π)2 H(x, 0,−∆2
⊥

)eib⊥·∆⊥

∆q(x,b⊥) =
∫

d2
∆⊥

(2π)2 H̃(x, 0,−∆2
⊥

)eib⊥·∆⊥

q(x,b⊥) has probabilistic interpretation, e.g. q(x,b⊥) > 0 for x > 0
GPDs and SSA – p.24/25



Summary

∆⊥

2M E(x, 0,−∆2
⊥

) describes how the momentum distribution of
unpolarized partons in the ⊥ plane gets transversely distorted
when is nucleon polarized in ⊥ direction.

(attractive) final state interaction in semi-inclusive DIS converts ⊥
position space asymmetry into ⊥ momentum space asymmetry

→֒ simple physical explanation for observed Sivers effect in
γ∗p→ πX

2H̃T + ET measures correlation between ⊥ spin and ⊥ angular
momentum (M.B., hep-ph/0505185)

physical explanation for Boer-Mulders effect; relation between h⊥
1

and the GPDs 2H̃T + ET

GPDs vs. q(x,b⊥): M.B., PRD 62, 71503 (2000), Int. J. Mod.
Phys. A18, 173 (2003); see also D. Soper, PRD 15, 1141 (1977).

Connection to SSA in M.B., PRD 69, 057501 (2004); NPA 735, 185
(2004); PRD 66, 114005 (2002).
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