

GPDs and SSA

Matthias Burkardt

burkardt@nmsu.edu

New Mexico State University Las Cruces, NM, 88003, U.S.A.

Outline

GPDs: probabilistic interpretation as Fourier transforms of impact parameter dependent PDFs

$$\quad \tilde{H}(x,0,-\boldsymbol{\Delta}_{\perp}^2) \longrightarrow \Delta q(x,\mathbf{b}_{\perp})$$

- $E(x, 0, -\Delta_{\perp}^2)$ $\hookrightarrow \perp$ deformation of unpol. PDFs in \perp pol. target
 - Sivers effect
- $2\tilde{H}_T + E_T \longrightarrow \bot$ deformation of \bot pol. PDFs in unpol. target
 - correlation between quark angular momentum and quark transversity
 - Boer-Mulders function $h_1^{\perp}(x, \mathbf{k}_{\perp})$
- Summary

Generalized Parton Distributions (GPDs)

■ GPDs: decomposition of form factors at a given value of *t*, w.r.t. the average momentum fraction $x = \frac{1}{2}(x_i + x_f)$ of the active quark

$$\int dx H_q(x,\xi,t) = F_1^q(t) \qquad \int dx \tilde{H}_q(x,\xi,t) = G_A^q(t)$$
$$\int dx E_q(x,\xi,t) = F_2^q(t) \qquad \int dx \tilde{E}_q(x,\xi,t) = G_P^q(t),$$

- x_i and x_f are the momentum fractions of the quark before and after the momentum transfer
- $2\xi = x_f x_i$
- formal definition (unpol. quarks):

$$\int \frac{dx^{-}}{2\pi} e^{ix^{-}\bar{p}^{+}x} \left\langle p' \left| \bar{q} \left(-\frac{x^{-}}{2} \right) \gamma^{+}q \left(\frac{x^{-}}{2} \right) \right| p \right\rangle = H(x,\xi,\Delta^{2})\bar{u}(p')\gamma^{+}u(p) + E(x,\xi,\Delta^{2})\bar{u}(p')\frac{i\sigma^{+\nu}\Delta_{\nu}}{2M}u(p)$$

Generalized Parton Distributions (GPDs)

In the limit of vanishing t and ξ , the nucleon non-helicity-flip GPDs must reduce to the ordinary PDFs:

$$H_q(x, 0, 0) = q(x)$$
 $\tilde{H}_q(x, 0, 0) = \Delta q(x).$

- GPDs are form factor for only those quarks in the nucleon carrying a certain fixed momentum fraction x
- \hookrightarrow t dependence of GPDs for fixed x, provides information on the **position space distribution** of quarks carrying a certain momentum fraction x

operator	forward matrix elem.	off-forward matrix elem.	position space
$ar q \gamma^+ q$	Q	F(t)	$ ho(ec{r})$
$\int \frac{dx^- e^{ixp^+x^-}}{4\pi} \overline{q}\left(\frac{-x^-}{2}\right) \gamma^+ q\left(\frac{x^-}{2}\right)$	q(x)	$H(x,\xi,t)$?

 $q(x, \mathbf{b}_{\perp}) = \text{impact parameter dependent PDF}$

Impact parameter dependent PDFs

define state that is localized in ⊥ position:
 [D.Soper,PRD15, 1141 (1977)]

$$\left|p^{+},\mathbf{R}_{\perp}=\mathbf{0}_{\perp},\lambda\right\rangle\equiv\mathcal{N}\int d^{2}\mathbf{p}_{\perp}\left|p^{+},\mathbf{p}_{\perp},\lambda\right\rangle$$

Note: \perp boosts in IMF form Galilean subgroup \Rightarrow this state has $\mathbf{R}_{\perp} \equiv \frac{1}{P^+} \int dx^- d^2 \mathbf{x}_{\perp} \mathbf{x}_{\perp} T^{++}(x) = \sum_i x_i \mathbf{r}_{i,\perp} = \mathbf{0}_{\perp}$ (cf.: working in CM frame in nonrel. physics)

define impact parameter dependent PDF

$$\boldsymbol{q}(\boldsymbol{x}, \mathbf{b}_{\perp}) \equiv \int \frac{dx^{-}}{4\pi} \langle p^{+}, \mathbf{R}_{\perp} = \mathbf{0}_{\perp} \left| \bar{q}(-\frac{x^{-}}{2}, \mathbf{b}_{\perp}) \gamma^{+} q(\frac{x^{-}}{2}, \mathbf{b}_{\perp}) \left| p^{+}, \mathbf{R}_{\perp} = \mathbf{0}_{\perp} \right\rangle e^{ixp^{+}x^{-}}$$

GPDs
$$\longleftrightarrow$$
 $q(x, \mathbf{b}_{\perp})$

In nucleon-helicity nonflip GPDs can be related to distribution of partons in \perp plane

$$q(x, \mathbf{b}_{\perp}) = \int \frac{d^2 \mathbf{\Delta}_{\perp}}{(2\pi)^2} e^{i \mathbf{\Delta}_{\perp} \cdot \mathbf{b}_{\perp}} H(x, 0, -\mathbf{\Delta}_{\perp}^2)$$

$$\Delta q(x, \mathbf{b}_{\perp}) = \int \frac{d^2 \mathbf{\Delta}_{\perp}}{(2\pi)^2} e^{i \mathbf{\Delta}_{\perp} \cdot \mathbf{b}_{\perp}} \tilde{H}(x, 0, -\mathbf{\Delta}_{\perp}^2)$$

no rel. corrections to this result! (Galilean subgroup of ⊥ boosts)
 q(x, b_⊥) has probabilistic interpretation, e.g.

$$q(x, \mathbf{b}_{\perp}) \ge |\Delta q(x, \mathbf{b}_{\perp})| \ge 0 \quad \text{for} \quad x > 0$$

 $q(x, \mathbf{b}_{\perp}) \le - |\Delta q(x, \mathbf{b}_{\perp})| \le 0 \quad \text{for} \quad x < 0$

GPDs \longleftrightarrow $q(x, \mathbf{b}_{\perp})$

- **b**_⊥ distribution measured w.r.t. $\mathbf{R}_{\perp}^{CM} \equiv \sum_{i} x_i \mathbf{r}_{i,\perp}$ \hookrightarrow width of the **b**_⊥ distribution should go to zero as $x \to 1$, since the active quark becomes the ⊥ center of momentum in that limit! $\hookrightarrow H(x, 0, -\mathbf{\Delta}_{\perp}^2)$ must become $\mathbf{\Delta}_{\perp}^2$ -indep. as $x \to 1$. Confirmed by recent lattice studies (QCDSF, LHPC)
- Anticipated shape of q(x, b⊥): large x: quarks from localized valence 'core', small x: contributions from larger ' meson cloud'
 → expect a gradual increase of the t-dependence (⊥ size) of H(x, 0, t) as x decreases

$q(x, \mathbf{b}_{\perp})$ in a simple model

Transversely Distorted Distributions and $E(x, 0, -\Delta_{\perp}^2)$

M.B., Int.J.Mod.Phys.A18, 173 (2003)

So far: only unpolarized (or long. pol.) nucleon! In general ($\xi = 0$):

$$\int \frac{dx^{-}}{4\pi} e^{ip^{+}x^{-}x} \left\langle P + \Delta, \uparrow \left| \bar{q}(0) \gamma^{+}q(x^{-}) \right| P, \uparrow \right\rangle = H(x, 0, -\Delta_{\perp}^{2})$$

$$\int \frac{dx^{-}}{4\pi} e^{ip^{+}x^{-}x} \left\langle P + \Delta, \uparrow \left| \bar{q}(0) \gamma^{+}q(x^{-}) \right| P, \downarrow \right\rangle = -\frac{\Delta_{x} - i\Delta_{y}}{2M} E(x, 0, -\Delta_{\perp}^{2}).$$

- Consider nucleon polarized in x direction (in IMF) $|X\rangle \equiv |p^+, \mathbf{R}_{\perp} = \mathbf{0}_{\perp}, \uparrow\rangle + |p^+, \mathbf{R}_{\perp} = \mathbf{0}_{\perp}, \downarrow\rangle.$
- \hookrightarrow unpolarized quark distribution for this state:

$$q(x,\mathbf{b}_{\perp}) = \mathcal{H}(x,\mathbf{b}_{\perp}) - \frac{1}{2M} \frac{\partial}{\partial b_y} \int \frac{d^2 \mathbf{\Delta}_{\perp}}{(2\pi)^2} E(x,0,-\mathbf{\Delta}_{\perp}^2) e^{-i\mathbf{b}_{\perp} \cdot \mathbf{\Delta}_{\perp}}$$

Physics: $j^+ = j^0 + j^3$, and left-right asymmetry from j^3 !
[X.Ji, PRL 78, 610 (2003)]

Intuitive connection with \vec{L}_q

- Electromagnetic interaction couples to vector current. Due to kinematics of the DIS-reaction (and the choice of coordinates \hat{z} -axis in direction of the momentum transfer) the virtual photons "see" (in the Bj-limit) only the $j^+ = j^0 + j^z$ component of the quark current
- If up-quarks have positive orbital angular momentum in the *x̂*-direction, then j^z is positive on the $+\hat{y}$ side, and negative on the $-\hat{y}$ side

Intuitive connection with \vec{L}_q

- Electromagnetic interaction couples to vector current. Due to kinematics of the DIS-reaction (and the choice of coordinates \hat{z} -axis in direction of the momentum transfer) the virtual photons "see" (in the Bj-limit) only the $j^+ = j^0 + j^z$ component of the quark current
- If up-quarks have positive orbital angular momentum in the \hat{x} -direction, then j^z is positive on the $+\hat{y}$ side, and negative on the $-\hat{y}$ side
- $\rightarrow j^+$ is distorted not because there are more quarks on one side than on the other but because the DIS-photons (coupling only to j^+) "see" the quarks on the $+\hat{y}$ side better than on the $-\hat{y}$ side (for $L_x > 0$).

Transversely Distorted Distributions and $E(x, 0, -\Delta_{\perp}^2)$

mean \perp displacement of flavor q (\perp flavor dipole moment)

$$d_y^q \equiv \int dx \int d^2 \mathbf{b}_\perp q_X(x, \mathbf{b}_\perp) b_y = \frac{1}{2M} \int dx E_q(x, 0, 0) = \frac{\kappa_q^p}{2M}$$

with $\kappa_{u/d}^p \equiv F_2^{u/d}(0) = \mathcal{O}(1-2) \quad \Rightarrow \quad d_y^q = \mathcal{O}(0.2fm)$

 \checkmark simple model: for simplicity, make ansatz where $E_q \propto H_q$

$$E_u(x,0,-\boldsymbol{\Delta}_{\perp}^2) = \frac{\kappa_u^p}{2} H_u(x,0,-\boldsymbol{\Delta}_{\perp}^2)$$
$$E_d(x,0,-\boldsymbol{\Delta}_{\perp}^2) = \kappa_d^p H_d(x,0,-\boldsymbol{\Delta}_{\perp}^2)$$

with $\kappa_u^p = 2\kappa_p + \kappa_n = 1.673$ $\kappa_d^p = 2\kappa_n + \kappa_p = -2.033$.

Model too simple but illustrates that anticipated distortion is very significant since κ_u and κ_d known to be large!

GPD \longleftrightarrow **SSA** (Sivers)

Sivers: distribution of unpol. quarks in \perp pol. proton

$$f_{q/p^{\uparrow}}(x,\mathbf{k}_{\perp}) = f_1^q(x,\mathbf{k}_{\perp}^2) - f_{1T}^{\perp q}(x,\mathbf{k}_{\perp}^2) \frac{(\hat{\mathbf{P}}\times\mathbf{k}_{\perp})\cdot S}{M}$$

- without FSI, $\langle \mathbf{k}_{\perp} \rangle = 0$, i.e. $f_{1T}^{\perp q}(x, \mathbf{k}_{\perp}^2) = 0$
- with FSI, $\langle \mathbf{k}_{\perp} \rangle \neq 0$ (Brodsky, Hwang, Schmidt)
- **FSI** formally included by appropriate choice of Wilson line gauge links in gauge invariant def. of $q(x, \mathbf{k}_{\perp})$
- → Qiu, Sterman; Collins; Ji; Boer et al.;..

$$\langle \mathbf{k}_{\perp} \rangle \sim \left\langle P, S \left| \bar{q}(0) \gamma^{+} \int_{0}^{\infty} d\eta^{-} G^{+\perp}(\eta) q(0) \right| P, S \right\rangle$$

- $\int_0^\infty d\eta^- G^{+\perp}(\eta)$ is the \perp impulse that the active quark acquires as it moves through color field of "spectators"
- What should we expect for Sivers effect in QCD ?

GPD
$$\longleftrightarrow$$
 SSA (Sivers)

- attractive FSI deflects active quark towards the center of momentum
- ← FSI translates position space distortion (before the quark is knocked out) in $+\hat{y}$ -direction into momentum asymmetry that favors $-\hat{y}$ direction
- \hookrightarrow correlation between sign of κ_q and sign of SSA: $f_{1T}^{\perp q} \sim -\kappa_q$
- $f_{1T}^{\perp q} \sim -\kappa_q$ consistent with HERMES results

GPD \longleftrightarrow **SSA** (Sivers); formal argument

 \checkmark treat FSI to lowest order in g

 \hookrightarrow

$$\left\langle k_{q}^{i}\right\rangle = -\frac{g}{4p^{+}}\int\frac{d^{2}\mathbf{b}_{\perp}}{2\pi}\frac{b^{i}}{\left|\mathbf{b}_{\perp}\right|^{2}}\left\langle p,s\left|\bar{q}(0)\gamma^{+}\frac{\lambda_{a}}{2}q(0)\rho_{a}(\mathbf{b}_{\perp})\right|p,s\right\rangle$$

with $\rho_a(\mathbf{b}_{\perp}) = \int dr^- \rho_a(r^-, \mathbf{b}_{\perp})$ summed over all quarks and gluons

- → SSA related to dipole moment of density-density correlations
- **9** GPDs (N polarized in $+\hat{x}$ direction): $u \longrightarrow +\hat{y}$ and $d \longrightarrow -\hat{y}$
- $\hookrightarrow \text{ expect density density correlation to show same asymmetry } \langle b^y \bar{u}(0) \gamma^+ \frac{\lambda_a}{2} u(0) \rho_a(\mathbf{b}_{\perp}) \rangle > 0$
- \hookrightarrow sign of SSA opposite to sign of distortion in position space

$$\int \frac{dx^{-}}{2\pi} e^{ixp^{+}x^{-}} \left\langle p' \left| \bar{q} \left(-\frac{x^{-}}{2} \right) \sigma^{+j} \gamma_{5} q \left(\frac{x^{-}}{2} \right) \right| p \right\rangle = H_{T} \bar{u} \sigma^{+j} \gamma_{5} u + \tilde{H}_{T} \bar{u} \frac{\varepsilon^{+j\alpha\beta} \Delta_{\alpha} P_{\beta}}{M^{2}} u + E_{T} \bar{u} \frac{\varepsilon^{+j\alpha\beta} \Delta_{\alpha} \gamma_{\beta}}{M} u + \tilde{E}_{T} \bar{u} \frac{\varepsilon^{+j\alpha\beta} P_{\alpha} \gamma_{\beta}}{M} u$$

- See also M.Diehl+P.Hägler, hep-ph/0504175.
- Fourier trafo of $2\tilde{H}_T^q + E_T^q$ for $\xi = 0$ describes distribution of transversity for <u>un</u>polarized target in \perp plane

$$q^{i}(x,\mathbf{b}_{\perp}) = \frac{\varepsilon^{ij}}{2M} \frac{\partial}{\partial b_{j}} \int \frac{d^{2} \mathbf{\Delta}_{\perp}}{(2\pi)^{2}} e^{i\mathbf{b}_{\perp} \cdot \mathbf{\Delta}_{\perp}} \left[2\tilde{H}_{T}^{q}(x,0,-\mathbf{\Delta}_{\perp}^{2}) + E_{T}^{q}(x,0,-\mathbf{\Delta}_{\perp}^{2}) \right]$$

- origin: correlation between quark spin (i.e. transversity) and angular momentum
- angular momentum J_q^i carried by quarks with transverse spin s^j in an unpolarized target

$$\langle J_q^i(s^j) \rangle = \frac{\delta_{ij}}{4} \int dx \left[2\tilde{H}_T(x,0,0) + E_T(x,0,0) \right] x$$

GPDs and SSA - p.19/25

Chirally Odd GPDs

$$J^{i} = \frac{1}{2} \varepsilon^{ijk} \int d^{3}x \left[T^{0j} x^{k} - T^{0k} x^{j} \right]$$

$$\rightarrow \langle J^{y} \rangle = \int d^{3}x \langle T^{++} \cdot x \rangle$$

$$T^{++}_{q} = \bar{q} \gamma^{+} \stackrel{\leftrightarrow}{D^{+}} q = \sum_{\pm s_{y}} T^{++}_{q,s_{y}} \text{ diagonal in transversity}$$

→ consider angular momentum carried by quarks of given transversity

$$\left\langle J_{q,s_y}^y \right\rangle = \int d^3x \left\langle T_{q,s_y}^{++} \cdot x \right\rangle$$

one can derive analog to Ji's sum rule

$$\left\langle J_{q,s_y}^y \right\rangle = \frac{1}{2} \int dx \left[2\tilde{H}_T(x,0,0) + E_T(x,0,0) \right] x$$

(unpol target)

 → correlation between quark transversity and quark angular momentum)

Transversity Distribution in Unpolarized Target

GPDs and SSA – p.21/25

- attractive FSI expected to convert position space asymmetry into momentum space asymmetry
- \hookrightarrow e.g. quarks at negative b_x with spin in $+\hat{y}$ get deflected (due to FSI) into $+\hat{x}$ direction
- \hookrightarrow (qualitative) connection between Boer-Mulders function $h_1^{\perp}(x, \mathbf{k}_{\perp})$ and the chirally odd GPD $2\tilde{H}_T + E_T$ that is similar to (qualitative) connection between Sivers function $f_{1T}^{\perp}(x, \mathbf{k}_{\perp})$ and the GPD E.
- **Boer-Mulders**: distribution of \perp **pol.** quarks in **unpol.** proton

$$f_{q^{\uparrow}/p}(x,\mathbf{k}_{\perp}) = \frac{1}{2} \left[f_1^q(x,\mathbf{k}_{\perp}^2) - h_1^{\perp q}(x,\mathbf{k}_{\perp}^2) \frac{(\hat{\mathbf{P}} \times \mathbf{k}_{\perp}) \cdot S_q}{M} \right]$$

Transversity Distribution in Unpolarized Target

- attractive FSI expected to convert position space asymmetry into momentum space asymmetry
- \hookrightarrow e.g. quarks at negative b_x with spin in $+\hat{y}$ get deflected (due to FSI) into $+\hat{x}$ direction
- \hookrightarrow (qualitative) connection between Boer-Mulders function $h_1^{\perp}(x, \mathbf{k}_{\perp})$ and the chirally odd GPD $2\tilde{H}_T + E_T$ that is similar to (qualitative) connection between Sivers function $f_{1T}^{\perp}(x, \mathbf{k}_{\perp})$ and the GPD E.
- \hookrightarrow qualitative predictions for $h_1^{\perp}(x, \mathbf{k}_{\perp})$
 - sign of h_1^{\perp} opposite to sign of $2\tilde{H}_T + E_T$

- use measurement of h_1^{\perp} to learn about spin-orbit correlation in nucleon wave function
- use LGT calcs. of $2\tilde{H}_T + E_T$ to make qualitative prediction for h_1^{\perp}

GPDs provide decomposition of form factors w.r.t. the momentum of the active quark

$$\int \frac{dx^{-}}{2\pi} e^{ixp^{+}x^{-}} \left\langle p' \left| \bar{q} \left(-\frac{x^{-}}{2} \right) \gamma^{+} q \left(\frac{x^{-}}{2} \right) \right| p \right\rangle$$

- GPDs resemble both PDFs and form factors: defined through matrix elements of light-cone correlator, but $\Delta \equiv p' p \neq 0$.
- t-dependence of GPDs at $\xi = 0$ (purely ⊥ momentum transfer) ⇒
 Fourier transform of impact parameter dependent PDFs $q(x, \mathbf{b}_{\perp})$
- ← knowledge of GPDs for $\xi = 0$ provides novel information about nonperturbative parton structure of nucleons: distribution of partons in \perp plane

$$q(x, \mathbf{b}_{\perp}) = \int \frac{d^2 \mathbf{\Delta}_{\perp}}{(2\pi)^2} H(x, 0, -\mathbf{\Delta}_{\perp}^2) e^{i\mathbf{b}_{\perp} \cdot \mathbf{\Delta}_{\perp}}$$
$$\Delta q(x, \mathbf{b}_{\perp}) = \int \frac{d^2 \mathbf{\Delta}_{\perp}}{(2\pi)^2} \tilde{H}(x, 0, -\mathbf{\Delta}_{\perp}^2) e^{i\mathbf{b}_{\perp} \cdot \mathbf{\Delta}_{\perp}}$$

• $q(x, \mathbf{b}_{\perp})$ has probabilistic interpretation, e.g. $q(x, \mathbf{b}_{\perp}) > 0$ for x > 0

- $\frac{\Delta_{\perp}}{2M}E(x,0,-\Delta_{\perp}^2)$ describes how the momentum distribution of unpolarized partons in the \perp plane gets transversely distorted when is nucleon polarized in \perp direction.
- (attractive) final state interaction in semi-inclusive DIS converts \perp position space asymmetry into \perp momentum space asymmetry
- \hookrightarrow simple physical explanation for observed Sivers effect in $\gamma^*p \to \pi X$
- $2\tilde{H}_T + E_T$ measures correlation between \perp spin and \perp angular momentum (M.B., hep-ph/0505185)
- physical explanation for Boer-Mulders effect; relation between h_1^{\perp} and the GPDs $2\tilde{H}_T + E_T$
- GPDs vs. q(x, b_⊥): M.B., PRD 62, 71503 (2000), Int. J. Mod. Phys. A18, 173 (2003); see also D. Soper, PRD 15, 1141 (1977).
- Connection to SSA in M.B., PRD 69, 057501 (2004); NPA 735, 185 (2004); PRD 66, 114005 (2002).