GPDs and SSA

Matthias Burkardt
burkardt@nmsu.edu
New Mexico State University
Las Cruces, NM, 88003, U.S.A.

Outline

- GPDs: probabilistic interpretation as Fourier transforms of impact parameter dependent PDFs
- $H\left(x, 0,-\boldsymbol{\Delta}_{\perp}^{2}\right) \longrightarrow q\left(x, \mathbf{b}_{\perp}\right)$
- $\tilde{H}\left(x, 0,-\boldsymbol{\Delta}_{\perp}^{2}\right) \longrightarrow \Delta q\left(x, \mathbf{b}_{\perp}\right)$
- $E\left(x, 0,-\Delta_{\perp}^{2}\right)$
$\hookrightarrow \perp$ deformation of unpol. PDFs in \perp pol. target
- Sivers effect
- $2 \tilde{H}_{T}+E_{T} \longrightarrow \perp$ deformation of \perp pol. PDFs in unpol. target
- correlation between quark angular momentum and quark transversity
- Boer-Mulders function $h_{1}^{\perp}\left(x, \mathbf{k}_{\perp}\right)$
- Summary

Generalized Parton Distributions (GPDs)

- GPDs: decomposition of form factors at a given value of t, w.r.t. the average momentum fraction $x=\frac{1}{2}\left(x_{i}+x_{f}\right)$ of the active quark

$$
\begin{array}{rlr}
\int d x H_{q}(x, \xi, t) & =F_{1}^{q}(t) & \int d x \tilde{H}_{q}(x, \xi, t)=G_{A}^{q}(t) \\
\int d x E_{q}(x, \xi, t) & =F_{2}^{q}(t) & \int d x \tilde{E}_{q}(x, \xi, t)=G_{P}^{q}(t)
\end{array}
$$

- x_{i} and x_{f} are the momentum fractions of the quark before and after the momentum transfer
- $2 \xi=x_{f}-x_{i}$
- formal definition (unpol. quarks):

$$
\begin{aligned}
\int \frac{d x^{-}}{2 \pi} e^{i x^{-} \bar{p}^{+} x}\left\langle p^{\prime}\right| \bar{q}\left(-\frac{x^{-}}{2}\right) \gamma^{+} q\left(\frac{x^{-}}{2}\right)|p\rangle & =H\left(x, \xi, \Delta^{2}\right) \bar{u}\left(p^{\prime}\right) \gamma^{+} u(p) \\
+ & E\left(x, \xi, \Delta^{2}\right) \bar{u}\left(p^{\prime}\right) \frac{i \sigma^{+\nu} \Delta_{\nu}}{2 M} u(p)
\end{aligned}
$$

Generalized Parton Distributions (GPDs)

- in the limit of vanishing t and ξ, the nucleon non-helicity-flip GPDs must reduce to the ordinary PDFs:

$$
H_{q}(x, 0,0)=q(x) \quad \tilde{H}_{q}(x, 0,0)=\Delta q(x) .
$$

- GPDs are form factor for only those quarks in the nucleon carrying a certain fixed momentum fraction x
$\hookrightarrow t$ dependence of GPDs for fixed x, provides information on the position space distribution of quarks carrying a certain momentum fraction x

Form Factors vs. GPDs

operator	forward matrix elem.	off-forward matrix elem.	position space
$\bar{q} \gamma^{+} q$	Q	$F(t)$	$\rho(\vec{r})$
$\int \frac{d x^{-} e^{i x p^{+}} x^{-}}{4 \pi} \bar{q}\left(\frac{-x^{-}}{2}\right) \gamma^{+} q\left(\frac{x^{-}}{2}\right)$	$q(x)$	$H(x, \xi, t)$	$?$

Form Factors vs. GPDs

operator	forward matrix elem.	off-forward matrix elem.	position space
$\bar{q} \gamma^{+} q$	Q	$F(t)$	$\rho(\vec{r})$
$\int \frac{d x^{-} e^{i x p^{+}} x^{-}}{4 \pi} \bar{q}\left(\frac{-x^{-}}{2}\right) \gamma^{+} q\left(\frac{x^{-}}{2}\right)$	$q(x)$	$H(x, 0, t)$	$q\left(x, \mathbf{b}_{\perp}\right)$

$q\left(x, \mathbf{b}_{\perp}\right)=$ impact parameter dependent PDF

Impact parameter dependent PDFs

- define state that is localized in \perp position:
[D.Soper,PRD15, 1141 (1977)]

$$
\left|p^{+}, \mathbf{R}_{\perp}=\mathbf{0}_{\perp}, \lambda\right\rangle \equiv \mathcal{N} \int d^{2} \mathbf{p}_{\perp}\left|p^{+}, \mathbf{p}_{\perp}, \lambda\right\rangle
$$

Note: \perp boosts in IMF form Galilean subgroup \Rightarrow this state has
$\mathbf{R}_{\perp} \equiv \frac{1}{P^{+}} \int d x^{-} d^{2} \mathbf{x}_{\perp} \mathbf{x}_{\perp} T^{++}(x)=\sum_{i} x_{i} \mathbf{r}_{i, \perp}=\mathbf{0}_{\perp}$
(cf.: working in CM frame in nonrel. physics)

- define impact parameter dependent PDF
$q\left(x, \mathbf{b}_{\perp}\right) \equiv \int \frac{d x^{-}}{4 \pi}\left\langle p^{+}, \mathbf{R}_{\perp}=\mathbf{0}_{\perp}\right| \bar{q}\left(-\frac{x^{-}}{2}, \mathbf{b}_{\perp}\right) \gamma^{+} q\left(\frac{x^{-}}{2}, \mathbf{b}_{\perp}\right)\left|p^{+}, \mathbf{R}_{\perp}=\mathbf{0}_{\perp}\right\rangle e^{i x p^{+} x^{-}}$

GPDs
 $q\left(x, \mathbf{b}_{\perp}\right)$

- nucleon-helicity nonflip GPDs can be related to distribution of partons in \perp plane

$$
\begin{aligned}
q\left(x, \mathbf{b}_{\perp}\right) & =\int \frac{d^{2} \boldsymbol{\Delta}_{\perp}}{(2 \pi)^{2}} e^{i \boldsymbol{\Delta}_{\perp} \cdot \mathbf{b}_{\perp}} H\left(x, 0,-\boldsymbol{\Delta}_{\perp}^{2}\right) \\
\Delta q\left(x, \mathbf{b}_{\perp}\right) & =\int \frac{d^{2} \boldsymbol{\Delta}_{\perp}}{(2 \pi)^{2}} e^{i \boldsymbol{\Delta}_{\perp} \cdot \mathbf{b}_{\perp}} \tilde{H}\left(x, 0,-\boldsymbol{\Delta}_{\perp}^{2}\right)
\end{aligned}
$$

- no rel. corrections to this result! (Galilean subgroup of \perp boosts)
- $q\left(x, \mathbf{b}_{\perp}\right)$ has probabilistic interpretation, e.g.

$$
\begin{array}{cll}
q\left(x, \mathbf{b}_{\perp}\right) \geq\left|\Delta q\left(x, \mathbf{b}_{\perp}\right)\right| \geq 0 & \text { for } & x>0 \\
q\left(x, \mathbf{b}_{\perp}\right) \leq-\left|\Delta q\left(x, \mathbf{b}_{\perp}\right)\right| \leq 0 & \text { for } & x<0
\end{array}
$$

- \mathbf{b}_{\perp} distribution measured w.r.t. $\mathbf{R}_{\perp}^{C M} \equiv \sum_{i} x_{i} \mathbf{r}_{i, \perp}$
\hookrightarrow width of the \mathbf{b}_{\perp} distribution should go to zero as $x \rightarrow 1$, since the active quark becomes the \perp center of momentum in that limit! $\hookrightarrow H\left(x, 0,-\boldsymbol{\Delta}_{\perp}^{2}\right)$ must become $\boldsymbol{\Delta}_{\perp}^{2}$-indep. as $x \rightarrow 1$. Confirmed by recent lattice studies (QCDSF, LHPC)
- Anticipated shape of $q\left(x, \mathbf{b}_{\perp}\right)$: large x : quarks from localized valence 'core', small x : contributions from larger ' meson cloud'
\hookrightarrow expect a gradual increase of the t-dependence (\perp size) of $H(x, 0, t)$ as x decreases

$q\left(x, \mathbf{b}_{\perp}\right)$ in a simple model

Transversely Distorted Distributions and $E\left(x, 0,-\Delta_{\perp}^{2}\right)$

M.B., Int.J.Mod.Phys.A18, 173 (2003)

- So far: only unpolarized (or long. pol.) nucleon! In general $(\xi=0)$:

$$
\begin{aligned}
\int \frac{d x^{-}}{4 \pi} e^{i p^{+} x^{-} x}\langle P+\Delta, \uparrow| \bar{q}(0) \gamma^{+} q\left(x^{-}\right)|P, \uparrow\rangle & =H\left(x, 0,-\Delta_{\perp}^{2}\right) \\
\int \frac{d x^{-}}{4 \pi} e^{i p^{+} x^{-} x}\langle P+\Delta, \uparrow| \bar{q}(0) \gamma^{+} q\left(x^{-}\right)|P, \downarrow\rangle & =-\frac{\Delta_{x}-i \Delta_{y}}{2 M} E\left(x, 0,-\Delta_{\perp}^{2}\right)
\end{aligned}
$$

- Consider nucleon polarized in x direction (in IMF)

$$
|X\rangle \equiv\left|p^{+}, \mathbf{R}_{\perp}=\mathbf{0}_{\perp}, \uparrow\right\rangle+\left|p^{+}, \mathbf{R}_{\perp}=\mathbf{0}_{\perp}, \downarrow\right\rangle
$$

\hookrightarrow unpolarized quark distribution for this state:

$$
q\left(x, \mathbf{b}_{\perp}\right)=\mathcal{H}\left(x, \mathbf{b}_{\perp}\right)-\frac{1}{2 M} \frac{\partial}{\partial b_{y}} \int \frac{d^{2} \boldsymbol{\Delta}_{\perp}}{(2 \pi)^{2}} E\left(x, 0,-\boldsymbol{\Delta}_{\perp}^{2}\right) e^{-i \mathbf{b}_{\perp} \cdot \mathbf{\Delta}_{\perp}}
$$

- Physics: $j^{+}=j^{0}+j^{3}$, and left-right asymmetry from j^{3} ! [X.Ji, PRL 78, 610 (2003)]

Intuitive connection with \vec{L}_{q}

- Electromagnetic interaction couples to vector current. Due to kinematics of the DIS-reaction (and the choice of coordinates -\hat{z}-axis in direction of the momentum transfer) the virtual photons "see" (in the Bj-limit) only the $j^{+}=j^{0}+j^{z}$ component of the quark current
- If up-quarks have positive orbital angular momentum in the \hat{x}-direction, then j^{z} is positive on the $+\hat{y}$ side, and negative on the $-\hat{y}$ side

Intuitive connection with \vec{L}_{q}

- Electromagnetic interaction couples to vector current. Due to kinematics of the DIS-reaction (and the choice of coordinates -\hat{z}-axis in direction of the momentum transfer) the virtual photons "see" (in the Bj-limit) only the $j^{+}=j^{0}+j^{z}$ component of the quark current
- If up-quarks have positive orbital angular momentum in the \hat{x}-direction, then j^{z} is positive on the $+\hat{y}$ side, and negative on the $-\hat{y}$ side
$\hookrightarrow j^{+}$is distorted not because there are more quarks on one side than on the other but because the DIS-photons (coupling only to j^{+}) "see" the quarks on the $+\hat{y}$ side better than on the $-\hat{y}$ side (for $L_{x}>0$).

Transversely Distorted Distributions and $E\left(x, 0,-\Delta_{\perp}^{2}\right)$

- $q\left(x, \mathbf{b}_{\perp}\right)$ in \perp polarized nucleon is distorted compared to longitudinally polarized nucleons !
- mean \perp displacement of flavor q (\perp flavor dipole moment)

$$
d_{y}^{q} \equiv \int d x \int d^{2} \mathbf{b}_{\perp} q_{X}\left(x, \mathbf{b}_{\perp}\right) b_{y}=\frac{1}{2 M} \int d x E_{q}(x, 0,0)=\frac{\kappa_{q}^{p}}{2 M}
$$

with $\kappa_{u / d}^{p} \equiv F_{2}^{u / d}(0)=\mathcal{O}(1-2) \quad \Rightarrow \quad d_{y}^{q}=\mathcal{O}(0.2 f m)$

- simple model: for simplicity, make ansatz where $E_{q} \propto H_{q}$

$$
\begin{aligned}
& E_{u}\left(x, 0,-\Delta_{\perp}^{2}\right)=\frac{\kappa_{u}^{p}}{2} H_{u}\left(x, 0,-\Delta_{\perp}^{2}\right) \\
& E_{d}\left(x, 0,-\Delta_{\perp}^{2}\right)=\kappa_{d}^{p} H_{d}\left(x, 0,-\Delta_{\perp}^{2}\right)
\end{aligned}
$$

$$
\text { with } \kappa_{u}^{p}=2 \kappa_{p}+\kappa_{n}=1.673 \quad \kappa_{d}^{p}=2 \kappa_{n}+\kappa_{p}=-2.033 .
$$

- Model too simple but illustrates that anticipated distortion is very significant since κ_{u} and κ_{d} known to be large!

GPD \longleftrightarrow SSA (Sivers)

- Sivers: distribution of unpol. quarks in \perp pol. proton

$$
f_{q / p^{\uparrow}}\left(x, \mathbf{k}_{\perp}\right)=f_{1}^{q}\left(x, \mathbf{k}_{\perp}^{2}\right)-f_{1 T}^{\perp q}\left(x, \mathbf{k}_{\perp}^{2}\right) \frac{\left(\hat{\mathbf{P}} \times \mathbf{k}_{\perp}\right) \cdot S}{M}
$$

- without FSI, $\left\langle\mathbf{k}_{\perp}\right\rangle=0$, i.e. $f_{1 T}^{\perp q}\left(x, \mathbf{k}_{\perp}^{2}\right)=0$
- with FSI, $\left\langle\mathbf{k}_{\perp}\right\rangle \neq 0$ (Brodsky, Hwang, Schmidt)
- FSI formally included by appropriate choice of Wilson line gauge links in gauge invariant def. of $q\left(x, \mathbf{k}_{\perp}\right)$
\hookrightarrow Qiu, Sterman; Collins; Ji; Boer et al.;..

$$
\left\langle\mathbf{k}_{\perp}\right\rangle \sim\langle P, S| \bar{q}(0) \gamma^{+} \int_{0}^{\infty} d \eta^{-} G^{+\perp}(\eta) q(0)|P, S\rangle
$$

- $\int_{0}^{\infty} d \eta^{-} G^{+\perp}(\eta)$ is the \perp impulse that the active quark acquires as it moves through color field of "spectators"
- What should we expect for Sivers effect in QCD ?

GPD \longleftrightarrow SSA (Sivers)

- example: $\gamma p \rightarrow \pi X$ (Breit frame)

- u, d distributions in \perp polarized proton have left-right asymmetry in \perp position space (T-even!); sign determined by $\kappa_{u} \& \kappa_{d}$
- attractive FSI deflects active quark towards the center of momentum
\hookrightarrow FSI translates position space distortion (before the quark is knocked out) in $+\hat{y}$-direction into momentum asymmetry that favors $-\hat{y}$ direction
\hookrightarrow correlation between sign of κ_{q} and sign of SSA: $f_{1 T}^{\perp q} \sim-\kappa_{q}$
- $f_{1 T}^{\perp q} \sim-\kappa_{q}$ consistent with HERMES results

GPD \longleftrightarrow SSA (Sivers); formal argument

- treat FSI to lowest order in g

$$
\left\langle k_{q}^{i}\right\rangle=-\frac{g}{4 p^{+}} \int \frac{d^{2} \mathbf{b}_{\perp}}{2 \pi} \frac{b^{i}}{\left|\mathbf{b}_{\perp}\right|^{2}}\langle p, s| \bar{q}(0) \gamma^{+} \frac{\lambda_{a}}{2} q(0) \rho_{a}\left(\mathbf{b}_{\perp}\right)|p, s\rangle
$$

with $\rho_{a}\left(\mathbf{b}_{\perp}\right)=\int d r^{-} \rho_{a}\left(r^{-}, \mathbf{b}_{\perp}\right)$ summed over all quarks and gluons
\hookrightarrow SSA related to dipole moment of density-density correlations

- GPDs (N polarized in $+\hat{x}$ direction): $u \longrightarrow+\hat{y}$ and $d \longrightarrow-\hat{y}$
\hookrightarrow expect density density correlation to show same asymmetry $\left\langle b^{y} \bar{u}(0) \gamma^{+} \frac{\lambda_{a}}{2} u(0) \rho_{a}\left(\mathbf{b}_{\perp}\right)\right\rangle>0$
\hookrightarrow sign of SSA opposite to sign of distortion in position space

Chirally Odd GPDs

$$
\begin{aligned}
& \int \frac{d x^{-}}{2 \pi} e^{i x p^{+} x^{-}}\left\langle p^{\prime}\right| \bar{q}\left(-\frac{x^{-}}{2}\right) \sigma^{+j} \gamma_{5} q\left(\frac{x^{-}}{2}\right)|p\rangle=H_{T} \bar{u} \sigma^{+j} \gamma_{5} u+\tilde{H}_{T} \bar{u} \frac{\varepsilon^{+j \alpha \beta} \Delta_{\alpha} P_{\beta}}{M^{2}} u \\
& +E_{T} \bar{u} \frac{\varepsilon^{+j \alpha \beta} \Delta_{\alpha} \gamma_{\beta}}{2 M} u+\tilde{E}_{T} \bar{u} \frac{\varepsilon^{+j \alpha \beta} P_{\alpha} \gamma_{\beta}}{M}
\end{aligned}
$$

- See also M.Diehl+P.Hägler, hep-ph/0504175.
- Fourier trafo of $2 \tilde{H}_{T}^{q}+E_{T}^{q}$ for $\xi=0$ describes distribution of transversity for unpolarized target in \perp plane

$$
q^{i}\left(x, \mathbf{b}_{\perp}\right)=\frac{\varepsilon^{i j}}{2 M} \frac{\partial}{\partial b_{j}} \int \frac{d^{2} \boldsymbol{\Delta}_{\perp}}{(2 \pi)^{2}} e^{i \mathbf{b}_{\perp} \cdot \boldsymbol{\Delta}_{\perp}}\left[2 \tilde{H}_{T}^{q}\left(x, 0,-\boldsymbol{\Delta}_{\perp}^{2}\right)+E_{T}^{q}\left(x, 0,-\boldsymbol{\Delta}_{\perp}^{2}\right)\right]
$$

- origin: correlation between quark spin (i.e. transversity) and angular momentum
- angular momentum J_{q}^{i} carried by quarks with transverse spin s^{j} in an unpolarized target

$$
\left\langle J_{q}^{i}\left(s^{j}\right)\right\rangle=\frac{\delta_{i j}}{4} \int d x\left[2 \tilde{H}_{T}(x, 0,0)+E_{T}(x, 0,0)\right] x
$$

Chirally Odd GPDs

- $J^{i}=\frac{1}{2} \varepsilon^{i j k} \int d^{3} x\left[T^{0 j} x^{k}-T^{0 k} x^{j}\right]$
$\hookrightarrow\left\langle J^{y}\right\rangle=\int d^{3} x\left\langle T^{++} \cdot x\right\rangle$
- $T_{q}^{++}=\bar{q} \gamma^{+} D^{+} q=\sum_{ \pm s_{y}} T_{q, s_{y}}^{++}$diagonal in transversity
\hookrightarrow consider angular momentum carried by quarks of given transversity

$$
\left\langle J_{q, s_{y}}^{y}\right\rangle=\int d^{3} x\left\langle T_{q, s_{y}}^{++} \cdot x\right\rangle
$$

- one can derive analog to Ji's sum rule

$$
\left\langle J_{q, s_{y}}^{y}\right\rangle=\frac{1}{2} \int d x\left[2 \tilde{H}_{T}(x, 0,0)+E_{T}(x, 0,0)\right] x
$$

(unpol target)
\hookrightarrow correlation between quark transversity and quark angular momentum)

Transversity Distribution in Unpolarized Target

$$
\begin{aligned}
& \text {, , , ノ ー ー ー 十 いいい い い , }
\end{aligned}
$$

$$
\begin{aligned}
& 111111 \rightarrow \rightarrow-\backslash \downarrow \downarrow \backslash \downarrow 1 \\
& \begin{array}{cccccccccccccccc}
1 & 1 & 1 & 1 & 1 & 1 & 1 & -1 & 1 & 1 & 1 & 1 & 1 \\
1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 \\
1 & 1 & 1 & 1 & 1 & 1 & 1 & -1 & 1 & 1 & 1 & 1 & 1 & 1
\end{array} \\
& 111 \backslash 1 \vee>-1 / 1111 \\
& 11 \backslash 1 \backslash \wedge-\infty<1 / 111
\end{aligned}
$$

Boer-Mulders function

- attractive FSI expected to convert position space asymmetry into momentum space asymmetry
\hookrightarrow e.g. quarks at negative b_{x} with spin in $+\hat{y}$ get deflected (due to FSI) into $+\hat{x}$ direction
\hookrightarrow (qualitative) connection between Boer-Mulders function $h_{1}^{\perp}\left(x, \mathbf{k}_{\perp}\right)$ and the chirally odd GPD $2 \tilde{H}_{T}+E_{T}$ that is similar to (qualitative) connection between Sivers function $f_{1 T}^{\perp}\left(x, \mathbf{k}_{\perp}\right)$ and the GPD E.
- Boer-Mulders: distribution of \perp pol. quarks in unpol. proton

$$
f_{q^{\uparrow} / p}\left(x, \mathbf{k}_{\perp}\right)=\frac{1}{2}\left[f_{1}^{q}\left(x, \mathbf{k}_{\perp}^{2}\right)-h_{1}^{\perp q}\left(x, \mathbf{k}_{\perp}^{2}\right) \frac{\left(\hat{\mathbf{P}} \times \mathbf{k}_{\perp}\right) \cdot S_{q}}{M}\right]
$$

Transversity Distribution in Unpolarized Target

- attractive FSI expected to convert position space asymmetry into momentum space asymmetry
\hookrightarrow e.g. quarks at negative b_{x} with spin in $+\hat{y}$ get deflected (due to FSI) into $+\hat{x}$ direction
\hookrightarrow (qualitative) connection between Boer-Mulders function $h_{1}^{\perp}\left(x, \mathbf{k}_{\perp}\right)$ and the chirally odd GPD $2 \tilde{H}_{T}+E_{T}$ that is similar to (qualitative) connection between Sivers function $f_{1 T}^{\perp}\left(x, \mathbf{k}_{\perp}\right)$ and the GPD E.
\hookrightarrow qualitative predictions for $h_{1}^{\perp}\left(x, \mathbf{k}_{\perp}\right)$
- sign of h_{1}^{\perp} opposite to sign of $2 \tilde{H}_{T}+E_{T}$
- " $\frac{h_{1}^{\perp}}{2 \tilde{H}_{T}+E_{T}} \approx \frac{f_{T T}^{\perp}}{E}$ "
- use measurement of h_{1}^{\perp} to learn about spin-orbit correlation in nucleon wave function
- use LGT calcs. of $2 \tilde{H}_{T}+E_{T}$ to make qualitative prediction for h_{1}^{\perp}

Summary

- GPDs provide decomposition of form factors w.r.t. the momentum of the active quark

$$
\int \frac{d x^{-}}{2 \pi} e^{i x p^{+} x^{-}}\left\langle p^{\prime}\right| \bar{q}\left(-\frac{x^{-}}{2}\right) \gamma^{+} q\left(\frac{x^{-}}{2}\right)|p\rangle
$$

- GPDs resemble both PDFs and form factors: defined through matrix elements of light-cone correlator, but $\Delta \equiv p^{\prime}-p \neq 0$.
- t-dependence of GPDs at $\xi=0$ (purely \perp momentum transfer) \Rightarrow Fourier transform of impact parameter dependent PDFs $q\left(x, \mathbf{b}_{\perp}\right)$
\hookrightarrow knowledge of GPDs for $\xi=0$ provides novel information about nonperturbative parton structure of nucleons: distribution of partons in \perp plane

$$
\begin{aligned}
& q\left(x, \mathbf{b}_{\perp}\right)=\int \frac{d^{2} \boldsymbol{\Delta}_{\perp}}{\left(2 \pi \pi^{2}\right.} H\left(x, 0,-\boldsymbol{\Delta}_{\perp}^{2}\right) e^{i \mathbf{b}_{\perp} \cdot \boldsymbol{\Delta}_{\perp}} \\
& \Delta q\left(x, \mathbf{b}_{\perp}\right)=\int \frac{d^{2} \boldsymbol{\Delta}_{\perp}}{(2 \pi)^{2}} \tilde{H}\left(x, 0,-\Delta_{\perp}^{2}\right) e^{i \mathbf{b}_{\perp} \cdot \boldsymbol{\Delta}_{\perp}}
\end{aligned}
$$

- $q\left(x, \mathbf{b}_{\perp}\right)$ has probabilistic interpretation, e.g. $q\left(x, \mathbf{b}_{\perp}\right)>0$ for $x>0$

Summary

- $\frac{\Delta \perp}{2 M} E\left(x, 0,-\Delta_{\perp}^{2}\right)$ describes how the momentum distribution of unpolarized partons in the \perp plane gets transversely distorted when is nucleon polarized in \perp direction.
- (attractive) final state interaction in semi-inclusive DIS converts \perp position space asymmetry into \perp momentum space asymmetry
\hookrightarrow simple physical explanation for observed Sivers effect in $\gamma^{*} p \rightarrow \pi X$
- $2 \tilde{H}_{T}+E_{T}$ measures correlation between \perp spin and \perp angular momentum (M.B., hep-ph/0505185)
- physical explanation for Boer-Mulders effect; relation between h_{1}^{\perp} and the GPDs $2 \tilde{H}_{T}+E_{T}$
- GPDs vs. $q\left(x, \mathbf{b}_{\perp}\right)$: M.B., PRD 62, 71503 (2000), Int. J. Mod. Phys. A18, 173 (2003); see also D. Soper, PRD 15, 1141 (1977).
- Connection to SSA in M.B., PRD 69, 057501 (2004); NPA 735, 185 (2004); PRD 66, 114005 (2002).

