#### Spin Filtering in Storage Rings: Scattering within the Beam, and the FILTEX results

N.N. Nikolaev

Institut f. Kernphysik, Forschungszentrum Jülich, 52425 Jülich, Germany & L.D.Landau Institute for Theoretical Physics, 142432 Chernogolovka, Russia In collaboration with F.F. Pavlov (IKP FZJ, Jülich & PNPI)

Transversity 2005, Como, 7-10 September, Como, Italy

Contents:

- Spin filtering & scattering within the beam: a quantum-mechanical evolution of spin-density matrix
- Why the spin-filtering on polarized electrons cancels out?
- Comparison with the kinetic equation approach of Milstein & Strakhovenko
- Interpretation of the FILTEX findings: one minor, but important, conceptual correction to Meyer's analysis
- Implications for spin-filtering of antiprotons in PAX FAIR

#### What do we (PAX) want (M.Contalbrigo's talk):

harvest top-class physics with double-polarized antiproton-proton collider at FAIR

What do we need: antiprotons of highest possible polarization.

How shall we get them:

- \* The textbook optics: optical polarizer absorbs the "wrong" polarization.
- $\star$  Spin filtering of neutrons in polarized  $He^3$  a popular source of polarized neutrons.
- ★ Optical pumping: can be reinterpreted as spin filtering
- \* Spin filtering in storage rings a unique practical solution for antiprotons.
- **\star** Internal atomic polarized  $H \uparrow$  and  $D \uparrow$  cell targets a unique choice for a polarizer.
- \* Polarized atom  $\uparrow$  = proton  $\uparrow$  (deuteron  $\uparrow$ ) + electron  $\uparrow$ . Impact of electrons?

\* Electron-to-proton polarization transfer (Akhiezer et al, 50's).: QED, the same status as the hyperfine splitting in atoms. Exists, is large and is routinely used at MAMI, Bates, Jlab for precision measurements of  $G_E/G_M$ 

**\*** H.O.Meyer's question: what scattering within the beam does to filtering?

#### The transmission and scattering

- \* Why is the sky that blue? It is exclusively the scattered light!
- \* Why is the setting sun so reddish? It is exclusively the transmitted light!
- N.B. We only see the transmitted light from distant stars!
- \* Why the sun changes its color? Transmission changes the unscattered light!
- \* Optical filtering: with rare exceptions one only deals with the transmitted light.
- \* The technical description: the polarization dependent refraction index.
- ★ Fermi-Akhiezer-Pomeranchuk-Lax formula:

$$n = 1 + \frac{2\pi}{p^2} N\hat{f}(o)$$

The forward NN scattering amplitude  $\hat{f}(o)$  depends on the beam and target spins

★ Polarized target is an optically active medium!

What the internal target does to the beam? (a poor theorists notion)

## Beam pipe Lost by scattering Scattering within the beam: Lost and found Transmitted beam Scattering losses Beam optics

Hans Otto Meyer (1994): polarization of the transmitted beam

is modified by polarization of particles scattered within the beam Large effects in the FILTEX experiment (Protons, T=23 MeV, Test Storage Ring, Heidelberg, 1992) ?

#### The kinematics of p-atom interactions in storage rings

\* Screening of e&p Coulomb fields beyond the Bohr radius  $a_B$ : incoherent quasielastic (E) scattering off protons and electrons at

$$\theta \gtrsim \theta_{min} = \frac{\alpha_{em} m_e}{\sqrt{2m_p T_p}} \Longrightarrow d\sigma_E = d\sigma_{el}^p + d\sigma_{el}^e$$

★ Electron is too light a target to deflect heavy protons (Horowitz& Meyer):

$$\theta \le \theta_e = m_e/m_p$$

 $\bigstar$  Dominant Coulomb pp scattering at up to

$$\theta \leq \theta_{Coulomb} \approx \sqrt{2\pi \alpha_{em}/m_p T_p \sigma_{tot,nucl}^{pp}} \approx 100 \mathrm{mrad}$$

★ FILTEX ring acceptance  $\theta_{acc} = 4.4$  mrad.

★ Strong inequality

$$\theta_{min} \ll \theta_e \ll \theta_{acc} \ll \theta_{Coulomb}$$

The corollaries: (i) pe scattering entirely within the stored beam, (ii) Beam losses dominated by Coulomb pp scattering.

First warning: how do we measure  $\sigma_{tot,nucl}^{pp}$  in the liquid hydrogen target?

- \* Beam attenuation:  $\hat{\sigma}_{tot}(p atom) \equiv \hat{\sigma}_{tot}^{pp} + + \hat{\sigma}_{tot}^{pe}$ .
- **\star** The *pe* X-section is gigantic:

$$\hat{\sigma}_{tot}^{pe} = \hat{\sigma}_{el}^{e} (> \theta_{\min}) \approx 4\pi \alpha_{em}^2 a_B^2 \approx 2 \cdot 10^4 Barn$$

How do we extract  $\sigma_{tot,nucl}^{pp}\sim$  40 mb on top of such a background?

 $\star \theta \leq \theta_e \ll$  angular divergence of any beam, pe scattering is entirely within the beam and does not cause any attenuation!

\* Skrinsky's question (2004, unpublished): shall the spin filtering by  $e \uparrow$  be observable?

★ Milstein & Strakhovenko (2005): electrons wouldn't work! (independent & simultaneous observation by NNN & F.Pavlov within a very different formalism).

\* Getting rid of Coulomb pp scattering in  $\sigma_{tot,nucl}^{pp}$ : (i) measure transmitted beam intensity with acceptance >  $\theta_{Coulomb}$ , (ii) extrapolate to zero acceptance angle.

#### Transmission Losses vs. Scattering within the Beam

 $\star$  Polarization of the transmitted beam: propagates at ZERO scattering angle, gets polarized by absorption & elastic scattering out of the beam

★ Lost & found polarization of scattered particles.

★ Pertinent features of spin filtering in storage rings (the poor theorists notion):
 (i) ultra-thin target,

(ii)  $\theta \geq heta_{acc}$ : scattering out of the beam pipe,

(iii) ring optics (betatron oscillations & focusing & defocusing & electron cooling &

...): transverse momentum  ${\bf p}$  gets randomized between consecutive interactions with the target,

(iv) angular divergence of the beam at the target  $\ll heta_{acc}$ .

\* The appropriate quantum-mechanical approach: the evolution equation for the spin-density matrix of the stored beam

#### The In-Medium Hamiltonian and Evolution of Transmitted Beam

 $\star$  Time = distance z traversed in the medium.

Hamiltonian 
$$=\hat{H} = \frac{1}{2}N\hat{F}(0) = \frac{1}{2}N[\hat{R}(0) + i\hat{\sigma}_{tot}]$$

 ${\cal N}={\rm density}$  of atoms in the target.

 $\star$  The density matrix of the stored beam

$$\hat{\rho}(\mathbf{p}) = \frac{1}{2}[I_0(\mathbf{p}) + \boldsymbol{\sigma}\mathbf{s}(\mathbf{p})]$$

 $I_0(\mathbf{p}) = \mathsf{particle density}, \ \mathbf{s}(\mathbf{p}) = \mathsf{spin density}.$ 

\* Textbook quantum-mechanical evolution for pure transmission ( $\theta_{acc} \rightarrow 0$ , vanishing scattering within the beam)

$$\frac{d}{dz}\hat{\rho}(\mathbf{p}) = i[\hat{H}, \hat{\rho}(\mathbf{p})] = \underbrace{i\frac{1}{2}N(\hat{R}\hat{\rho}(\mathbf{p}) - \hat{\rho}(\mathbf{p})\hat{R})}_{\text{Real potential=Pure refraction}} \\ - \underbrace{\frac{1}{2}N(\hat{\sigma}_{tot}\hat{\rho}(\mathbf{p}) + \hat{\rho}(\mathbf{p})\hat{\sigma}_{tot})}_{\text{(Imaginary potential=Pure attenuation)}}$$

#### Evolution of Transmitted Beam Cont'd

$$\hat{\sigma}_{tot} = \sigma_0 + \underbrace{\sigma_1(\boldsymbol{\sigma} \cdot \boldsymbol{Q}) + \sigma_2(\boldsymbol{\sigma} \cdot \mathbf{k})(\boldsymbol{Q} \cdot \mathbf{k})}_{spin-sensitive\ loss},$$

$$\hat{R} = R_0 + \underbrace{R_1(\boldsymbol{\sigma} \cdot \boldsymbol{Q}) + R_2(\boldsymbol{\sigma} \cdot \mathbf{k})(\boldsymbol{Q} \cdot \mathbf{k})}_{\boldsymbol{\sigma} \cdot \text{Pseudomagnetic\ field}},$$

 $\mathbf{k}=$  beam axis,  ${oldsymbol{Q}}=$  target polarization.

**\*** Evolution of the beam polarization  $\boldsymbol{P} = \mathbf{s}/I_0$ 

$$d\mathbf{P}/dz = \underbrace{-N\sigma_1(\mathbf{Q} - (\mathbf{P} \cdot \mathbf{Q})\mathbf{P}) - N\sigma_2(\mathbf{Q}\mathbf{k})(\mathbf{k} - (\mathbf{P} \cdot \mathbf{k})\mathbf{P})}_{\text{(Polarization buildup by spin-sensitive loss)}} + \underbrace{NR1(\mathbf{P} \times \mathbf{Q}) + nR_2(\mathbf{Q}\mathbf{k})(\mathbf{P} \times \mathbf{k})}_{\text{(Spin precession in pseudomagnetic field)}}$$

\* Precession effects are missed in Milstein-Strakhovenko kinetic equation for spin-state population numbers. Kinetic equation holds only if spin-density matrix is diagonal.

★ Kinetic equation is recovered from the quantum-mechanical evolution of the density matrix upon averaging over precessions.

#### The polarization buildup

★ Coupled evolution equations after into-the-beam scattering

$$\frac{d}{dz} \begin{pmatrix} I_0 \\ s \end{pmatrix} = -N \begin{pmatrix} \sigma_0(>\theta_{\min}) & Q\sigma_1(>\theta_{\min}) \\ Q\sigma_1(>\theta_{\min}) & \sigma_0(>\theta_{acc}) \end{pmatrix} \cdot \begin{pmatrix} I_0 \\ s \end{pmatrix},$$

 $\star$  Solutions

$$\propto \exp(-\lambda_{1,2}Nz)$$

with eigenvalues

$$\lambda_{1,2} = \sigma_0 \pm Q\sigma_1$$

**\*** Meyer's equation for pure transverse polarizations:

$$\frac{dP}{dz} = -N\boldsymbol{\sigma_1}\boldsymbol{Q}(1-\boldsymbol{P}^2)$$

★ Polarization buildup

$$P(z) = -\tanh(Q\sigma_1 N z)$$

\* Any spin-dependent loss filters spin of the stored beam:

#### Impact of Scattering within the Beam upon Spin Filtering

\* Quasielastic (E) 
$$p + atom \rightarrow p'_{scatt} + e + p_{recoil}, \mathbf{q} = \text{momentum transfer:}$$
  
$$\frac{d\hat{\sigma}_E}{d^2\mathbf{q}} = \frac{1}{(4\pi)^2} \hat{\mathcal{F}}(\mathbf{q}) \hat{\rho} \hat{\mathcal{F}}^{\dagger}(\mathbf{q}) = \frac{1}{(4\pi)^2} \hat{\mathcal{F}}_{\boldsymbol{e}}(\mathbf{q}) \hat{\rho} \hat{\mathcal{F}}_{\boldsymbol{e}}^{\dagger}(\mathbf{q}) + \frac{1}{(4\pi)^2} \hat{\mathcal{F}}_{\boldsymbol{p}}(\mathbf{q}) \hat{\rho} \hat{\mathcal{F}}_{\boldsymbol{p}}^{\dagger}(\mathbf{q})$$

**\star Lost and found**: scattering within the beam at  $\theta \leq \theta_{acc}$ 

★ Formal derivation from multiple-scattering theory: unitarity(loss-recovery balance) is satisfied rigorously.

$$\begin{split} \frac{d}{dz} \hat{\rho} &= i[\hat{H}, \hat{\rho}] = \underbrace{i\frac{1}{2}N(\hat{R}\hat{\rho}(\mathbf{p}) - \hat{\rho}(\mathbf{p})\hat{R})}_{Ignore\ this\ precession} \\ &- \underbrace{\frac{1}{2}N(\hat{\sigma}_{tot}\hat{\rho}(\mathbf{p}) + \hat{\rho}(\mathbf{p})\hat{\sigma}_{tot})}_{Evolution\ by\ loss} \\ &+ \underbrace{N\int^{\Omega_{acc}}\frac{d^{2}\mathbf{q}}{(4\pi)^{2}}\hat{\mathcal{F}}(\mathbf{q})\hat{\rho}(\mathbf{p}-\mathbf{q})\hat{\mathcal{F}}^{\dagger}(\mathbf{q})}_{\text{Lost and found:\ scattering within the beam}} \end{split}$$

#### Needle-Sharp Scattering off Electrons: $\theta_e \ll \theta_{acc}$

\* Breit pe interaction (1929): Coulomb (+ unimportant relativistic corrections) + hyperfine + tensor + spin-orbit (negligible small & unimportant to us)

$$U(\mathbf{q}) = \alpha_{em} \left\{ \frac{1}{\mathbf{q}^2} + \mu_p \frac{(\boldsymbol{\sigma}_p \mathbf{q})(\boldsymbol{\sigma}_e \mathbf{q}) - (\boldsymbol{\sigma}_p \boldsymbol{\sigma}_e \mathbf{q}^2)}{4m_p m_e \mathbf{q}^2} \right\}$$
$$\hat{\sigma}_{tot}^e = \underbrace{\sigma_0^e}_{Coulomb} + \underbrace{\sigma_1^e(\boldsymbol{\sigma}_p \cdot \boldsymbol{Q}_e) + \sigma_2^e(\boldsymbol{\sigma}_p \cdot \mathbf{k})(\boldsymbol{Q}_e \cdot \mathbf{k})}_{Coluomb \times (Hyperfine+Tensor)}$$

\* Horowitz-Meyer (1994): substantial spin-dependent loss of protons! Stronger longitudinal filtering:  $\sigma_2^e = 2\sigma_1^e$ . (property inherent to Buttimore et al. helicity amplitudes)

\* Polarization of scattered protons  $P_f$  (transverse case):

$$\sigma_0^e \boldsymbol{P}_f = \sigma_0^e \boldsymbol{P} + \sigma_1^e \boldsymbol{Q}_e$$

\* clearcut electron-to-proton spin transfer (Akhiezer,...,Horowitz-Meyer)

**\*** one-to-one beam-to-scattered proton spin transfer (Milstein-Strakhovenko)

\* Pure electron contribution to the loss of transmitted beam (suppress  $\theta >> \theta_{min}$ )

$$\frac{1}{2}\frac{d}{dz}I_0(\mathbf{p})(1+\boldsymbol{\sigma}\cdot\boldsymbol{P}(\mathbf{p})) = -\frac{1}{2}NI_0(\mathbf{p})\left[\underbrace{\sigma_0^e + \sigma_1^e \boldsymbol{P} \boldsymbol{Q}_e}_{particle number \ loss} + \boldsymbol{\sigma}\underbrace{\left(\sigma_0^e \boldsymbol{P} + \sigma_1^e \boldsymbol{Q}_e\right)}_{selective \ spin \ loss}\right]$$

\* Lost & found (precession-averaged) from scattering within the beam

$$N \int \frac{d^{2}\mathbf{q}}{(4\pi)^{2}} \hat{\mathcal{F}}_{e}(\mathbf{q}) \hat{\rho}(\mathbf{p}-\mathbf{q}) \hat{\mathcal{F}}_{e}^{\dagger}(\mathbf{q})$$

$$= \frac{1}{2} N I_{0}(\mathbf{p}) \int \frac{d^{2}\mathbf{q}}{(4\pi)^{2}} \hat{\mathcal{F}}_{e}(\mathbf{q}) \hat{\mathcal{F}}_{e}^{\dagger}(\mathbf{q}) + \frac{1}{2} N \mathbf{s}(\mathbf{p}) \int \frac{d^{2}\mathbf{q}}{(4\pi)^{2}} \hat{\mathcal{F}}_{e}(\mathbf{q}) \boldsymbol{\sigma} \hat{\mathcal{F}}_{e}^{\dagger}(\mathbf{q})$$

$$= \underbrace{\frac{1}{2} N I_{0}(\mathbf{p}) [\sigma_{0}^{e} + \sigma_{1}^{e}(\mathbf{P} \cdot \mathbf{Q})]}_{Lost\& found particle number} + \underbrace{\frac{1}{2} N I_{0}(\mathbf{p}) \boldsymbol{\sigma} [\sigma_{0}^{e} \mathbf{P} + \sigma_{1}^{e} \mathbf{Q}_{e}]}_{Lost\& found spin}$$

★ The net effect:

$$\hat{\sigma}_{tot} \equiv \hat{\sigma}_{abs}^{p} + \hat{\sigma}_{el}^{p} (>\theta_{\min}) + \hat{\sigma}_{el}^{e} (>\theta_{\min}) \Longrightarrow \hat{\sigma}_{tot} - \hat{\sigma}_{el}^{e} (>\theta_{\min}) = \hat{\sigma}_{abs}^{p} + \hat{\sigma}_{el}^{p} (>\theta_{\min}).$$

Skrinsky' concern was well taken: electrons in the target are invisible, scattering within the beam cancels exactly the transmission losses (also Milstein & Strakhovenko).
 Sad conclusion: Farewell to electromagnetic electron-to-antiproton spin transfer...

#### Proton-Proton Scattering within the Beam (transverse case)

★ Decompose pure transmission losses

$$\frac{d}{dz}\hat{\rho} = -\frac{1}{2}N(\hat{\sigma}_{tot}(>\theta_{acc})\hat{\rho}(\mathbf{p}) + \hat{\rho}(\mathbf{p})\hat{\sigma}_{tot}(>\theta_{acc})))$$

$$Unrecoverable \ transmission \ loss$$

$$-\frac{1}{2}NI_0(\mathbf{p})[\underbrace{\sigma_0^{el}(<\theta_{acc}) + \sigma_1^{el}(<\theta_{acc})PQ}_{Potentially \ recoverable \ particle \ loss}$$

$$+ \sigma \underbrace{(\sigma_0^{el}(<\theta_{acc})P + \sigma_1^{el}(<\theta_{acc})Q}_{Potentially \ recoverable \ spin \ loss}]$$

 $\star$  Angular divergence of the beam at target  $\ll heta_{acc}$ : integrate over  ${
m p}$ 

$$\int d^{2}\mathbf{p} \int^{\Omega_{\mathrm{acc}}} \frac{d^{2}\mathbf{q}}{(4\pi)^{2}} \hat{\mathcal{F}}(\mathbf{q}) \hat{\rho}(\mathbf{p}-\mathbf{q}) \hat{\mathcal{F}}^{\dagger}(\mathbf{q}) = \left[\int d^{2}\mathbf{p} I_{0}(\mathbf{p})\right] \cdot \int^{\Omega_{\mathrm{acc}}} \frac{d^{2}\mathbf{q}}{(4\pi)^{2}} \hat{\mathcal{F}}(\mathbf{q}) \frac{1}{2} (1+\boldsymbol{\sigma}\boldsymbol{P}) \hat{\rho}(\mathbf{q}) \hat{\mathcal{F}}^{\dagger}(\mathbf{q}) = \hat{\sigma}^{E} (\leq \theta_{\mathrm{acc}}) \cdot \int d^{2}\mathbf{p} I_{0}(\mathbf{p}) \hat{\mathcal{F}}^{\dagger}(\mathbf{q}) = \hat{\sigma}^{E} (\leq \theta_{\mathrm{acc}}) \cdot \int d^{2}\mathbf{p} I_{0}(\mathbf{p}) \hat{\mathcal{F}}^{\dagger}(\mathbf{q}) = \hat{\sigma}^{E} (\leq \theta_{\mathrm{acc}}) \cdot \int d^{2}\mathbf{p} I_{0}(\mathbf{p}) \hat{\mathcal{F}}^{\dagger}(\mathbf{q}) = \hat{\sigma}^{E} (\leq \theta_{\mathrm{acc}}) \cdot \int d^{2}\mathbf{p} I_{0}(\mathbf{p}) \hat{\mathcal{F}}^{\dagger}(\mathbf{q}) = \hat{\sigma}^{E} (\leq \theta_{\mathrm{acc}}) \cdot \int d^{2}\mathbf{p} I_{0}(\mathbf{p}) \hat{\mathcal{F}}^{\dagger}(\mathbf{q}) = \hat{\sigma}^{E} (\leq \theta_{\mathrm{acc}}) \cdot \int d^{2}\mathbf{p} I_{0}(\mathbf{p}) \hat{\mathcal{F}}^{\dagger}(\mathbf{q}) = \hat{\sigma}^{E} (\leq \theta_{\mathrm{acc}}) \cdot \hat{\mathcal{F}}^{\dagger}(\mathbf{q}) \hat{\mathcal{F}}^{\dagger}(\mathbf{q}) \hat{\mathcal{F}}^{\dagger}(\mathbf{q}) = \hat{\sigma}^{E} (\leq \theta_{\mathrm{acc}}) \cdot \hat{\mathcal{F}}^{\dagger}(\mathbf{q}) \hat{\mathcal{F}}^{\dagger}(\mathbf{q}) \hat{\mathcal{F}}^{\dagger}(\mathbf{q}) \hat{\mathcal{F}}^{\dagger}(\mathbf{q}) = \hat{\sigma}^{E} (\leq \theta_{\mathrm{acc}}) \cdot \hat{\mathcal{F}}^{\dagger}(\mathbf{q}) \hat{\mathcal{F}}^$$

 $\star$  The mismatch of potentially recoverable losses and scattering within the beam

$$\Delta \hat{\sigma} = \frac{1}{4} (\hat{\sigma}_{el}(\langle \boldsymbol{\theta}_{acc})(1 + \boldsymbol{\sigma} \boldsymbol{P}) + (1 + \boldsymbol{\sigma} \boldsymbol{P})\hat{\sigma}_{el}(\langle \boldsymbol{\theta}_{acc})) - \hat{\sigma}^{E}(\langle \boldsymbol{\theta}_{acc}))$$

\* X-section of scattering within the beam (precession averaged)

$$\hat{\sigma}^{E}(\leq \theta_{\text{acc}}) = \underbrace{\sigma_{0}^{el}(\leq \theta_{\text{acc}}) + \sigma_{1}^{el}(\leq \theta_{\text{acc}})(\boldsymbol{P} \cdot \boldsymbol{Q})}_{Lost \& found particles} + \underbrace{\boldsymbol{\sigma} \cdot \left(\sigma_{0}^{E}(\leq \theta_{\text{acc}})\boldsymbol{P}\right) + \sigma_{1}^{E}(\leq \theta_{\text{acc}})\boldsymbol{Q}\right)}_{Lost \& found spin}$$

★ The mismatch X-section operator

$$\begin{split} \Delta \hat{\sigma} &= \underbrace{\sigma_0^{el}(\langle \theta_{acc} \rangle + \sigma_1^{el}(\langle \theta_{acc} \rangle PQ_e)}_{Potentially \ recoverable \ particle \ loss} \\ &+ \underbrace{\sigma \left( \sigma_0^{el}(\langle \theta_{acc} \rangle P + \sigma_1^{el}(\langle \theta_{acc} \rangle Q_e) \right)}_{Potentially \ recoverable \ spin \ loss} \\ &- \underbrace{\sigma_0^{el}(\leq \theta_{acc}) + \sigma_1^{el}(\leq \theta_{acc})(P \cdot Q)}_{Lost \ \& \ found \ particles} \\ &- \underbrace{\sigma \cdot \left( \sigma_0^E(\leq \theta_{acc}) P + \sigma_1^E(\leq \theta_{acc})Q \right)}_{Lost \ \& \ found \ spin} \\ &= \underbrace{\sigma \left( 2\Delta\sigma_0 P + \Delta\sigma_1 Q \right)} \end{split}$$

★ Lost & found corrected coupled evolution equations

$$\frac{d}{dz} \begin{pmatrix} I_0 \\ s \end{pmatrix} = -n \begin{pmatrix} \sigma_0(>\theta_{\rm acc}) & Q\sigma_1(>\theta_{\rm acc}) \\ Q(\sigma_1(>\theta_{\rm acc}) + \Delta\sigma_1) & \sigma_0(>\theta_{\rm acc}) + 2\Delta\sigma_0 \end{pmatrix} \cdot \begin{pmatrix} I_0 \\ s \end{pmatrix},$$

 $\star$  No corrections to the equation for the particle number.

\*  $\Delta \sigma_{0,1}$  describe a mismatch between the spin the scattering takes away from the stored beam and the lost & found spin put back by after the particle scatteres within the beam. In terms of standard observables:

$$\sigma_1^{el}(>\theta_{\rm acc}) = \frac{1}{2} \int_{\theta_{\rm acc}} d\Omega (d\sigma/d\Omega) (A_{00nn} + A_{00ss})$$

$$\Delta \sigma_0 = \frac{1}{2} \left[ \sigma_0^{el} (\leq \theta_{\rm acc}) - \sigma_0^E (\leq \theta_{\rm acc}) \right]$$
  
$$= \frac{1}{2} \int_{\theta_{\rm min}}^{\theta_{\rm acc}} d\Omega \frac{d\sigma}{d\Omega} (1 - \frac{1}{2} D_{n0n0} - \frac{1}{2} D_{s'0s0} \cos(\theta_{lab}))$$
  
$$\Delta \sigma_1 = \sigma_1^{el} (\leq \theta_{\rm acc}) - \sigma_1^E (\leq \theta_{\rm acc})$$
  
$$= \frac{1}{2} \int_{\theta_{\rm min}}^{\theta_{\rm acc}} d\Omega \frac{d\sigma}{d\Omega} (A_{00nn} + A_{00ss} - K_{n00n} - K_{s'00s} \cos(\theta_{lab}))$$

★ The SAID menagerie:

 $A_{00nn} = A_{yy}$ ,  $A_{00ss} = A_{xx}$ ,  $K_{n00n} = D_t$ ,  $D_{s'0s0} = R$ ,  $D_{n0n0} = D$ ,  $K_{s'00s} = -R'_t$ . \* Milstein & Strakhovenko relate  $\Delta \sigma_{0,1}$  to spin-flip scattering.

#### Polarization Buildup with Scattering within the Beam

\* Coupled evolution equations after into-the-beam scattering

$$\frac{d}{dz} \begin{pmatrix} I_0 \\ s \end{pmatrix} = -n \begin{pmatrix} \sigma_0(>\theta_{\rm acc}) & Q\sigma_1(>\theta_{\rm acc}) \\ Q(\sigma_1(>\theta_{\rm acc}) + \Delta\sigma_1) & \sigma_0(>\theta_{\rm acc}) + 2\Delta\sigma_0 \end{pmatrix} \cdot \begin{pmatrix} I_0 \\ s \end{pmatrix} ,$$

 $\star$  Solutions

$$\propto \exp(-\lambda_{1,2}Nz)$$

with eigenvalues

$$\lambda_{1,2} = \sigma_0 + \Delta \sigma_0 \pm \sigma_3$$
  
$$\sigma_3 = Q \sqrt{\sigma_1(\sigma_1 + \Delta \sigma_1) + \Delta \sigma_0^2},$$

\* The polarization buildup (also Milstein&Strakhovenko)

$$P(z) = -\frac{(\sigma_1 + \Delta \sigma_1) \tanh(\sigma_3 N z)}{\sigma_3 + \Delta \sigma_0 \tanh(\sigma_3 N z)}$$

★ The effective small-time polarization cross section

$$\sigma_P \approx -Q(\sigma_1 + \Delta \sigma_1)$$

#### Pauli principle and Spin Deep under the Coulomb peak

★ "Normal" elastic scattering into  $\theta \leq \theta_{acc} = 4.4 \cdot 10^{-3}$  is entirely negligible.

★ "Abnormal"  $\theta_{acc} \ll \theta_{Coulomb}$  - scattering within the beam is deep under the Coulomb peak.

\* Entirely inaccessible in scattering experiments, important for storage rings. Need extrapolations of hadronic amplitudes.

 $\star$  Pauli principle  $\implies$  double-spin dependence from exchange interaction

$$\hat{\mathcal{F}} = \frac{1}{2}\mathcal{F}(\theta) + \frac{1}{4}(1 + \boldsymbol{\sigma}_1 \cdot \boldsymbol{\sigma}_2)\mathcal{F}(\pi - \theta) \\ = \underbrace{\mathcal{F}_0(\theta)}_{Coulomb \ singularity \ 1/\theta^2} + \underbrace{\mathcal{F}_1(\theta)}_{Constant} \boldsymbol{\sigma}_1 \cdot \boldsymbol{\sigma}_2$$

- $\star$  Exchange interaction stronger than Breit interaction of magnetic moments of protons
- \*  $1/\theta^2$  enhancement makes interference  $\propto \mathcal{F}_0(\theta)\mathcal{F}_1(\theta)$  substantial.
- \* Add to  $\mathcal{F}_1(\theta)$  similar (and typically larger) two-spin nuclear interaction amplitudes.
- $\star$  Upon azimuthal integrations spin-flips don't interfere with the dominant  $\mathcal{F}_0(\theta)$

#### Understanding the FILTEX result according to Meyer-Horowitz:

\* The FILTEX polarization rate as published in 1993:  $\sigma_P = 63 \pm 3(stat.)$  mb, a fantastic 20 $\sigma$  measurement!

\* Better understanding of target density & polarization (F.Rathmann, PhD):  $\sigma_P = 69 \pm 3(stat.) \pm 3(sys.)$  (stat.)

\* The expectation from removal by pure nuclear scattering:  $\sigma_{P,expected} = 122$  mb.

\* H.O. Meyer: correct  $\sigma_P$  for scattering within the beam. Strong effect of  $\propto \mathcal{F}_0(\theta)\mathcal{F}_1(\theta)$  interference. Enhanced by  $\log(\theta_{acc}^2/\theta_{min}^2) \approx 11$ . Meyer's reevaluation  $\sigma_1(>\theta_{acc}) = 83$  mb (SAID of 94) instead of 122 mb

 $\star$  Add into-the-beam protons off polarized electrons:  $\delta\sigma_1^{ep}=-70~{\rm mb}$ 

 $\star$  Add into-the-beam protons off polarized protons:  $\delta\sigma_1^{ep}=+52~{\rm mb}$ 

**\*** Net result:  $\sigma_P = 65$ mb. Good but accidental agreement with FILTEX!

\* What went wrong: : Double counting, Meyer should have started with loss from  $\theta > \theta_{min}$ , and then add scattering within the beam. Still, Meyer was infinitesimally close to the correct answer!

#### Understanding the FILTEX result: simple look at negligible small $\Delta \sigma_{1,0}$

\* NNN-Pavlov: SAID-SP05 for filtering by loss:  $\sigma_1(>\theta_{\rm acc}) = -85.6$  (only marginal changes from SAID to Nijmegen databases).

★ Spin deep under the Coulomb peak:

$$\hat{\mathcal{F}} = \underbrace{\mathcal{F}_0(\theta)}_{Coulomb \propto 1/\theta^2} + \underbrace{\mathcal{F}_1(\theta)}_{Breit+Nuclear} \boldsymbol{\sigma}_1 \cdot \boldsymbol{\sigma}_2 + (\text{other two - spin terms})$$

\* Treatment is identical to that of the Breit proton-electron interaction.

\* The dominant spin-dependence from the interference  $\propto \mathcal{F}_0(\theta)\mathcal{F}_1(\theta)$ . The old story retold: scattering within the beam cancels filtering by transmission losses:

$$\hat{\sigma}_{tot} \equiv \hat{\sigma}_{abs}^{p} + \hat{\sigma}_{el}^{p} (> \theta_{\min}) \Longrightarrow \hat{\sigma}_{tot} - \hat{\sigma}_{el}^{p} (\theta_{\min} \le \theta \le \theta_{acc}) = \hat{\sigma}_{abs}^{p} + \hat{\sigma}_{el}^{p} (> \theta_{acc}).$$

\* Nonrelativistic heavy particles love retaining their spin: numerical evaluation

$$\Delta \sigma_1 \approx -6 \cdot 10^{-3} \text{ mb}$$

 $\star$  Full agreement with Milstein & Strakhovenko result in terms of the spin-flip X-section.

#### Conclusions: what next with antiprotons?

#### \* FILTEX is an important confirmation spin filtering works.

\* A consensus between theorists (Budker Institute & IKP FZJ): Polarized electrons in polarized atoms wouldn't polarize antiprotons in storage rings.

\* H.O. Meyer: scattering within the beam and Coulomb-nuclear interference reduce the expected  $\sigma_P = 122$  mb down to  $\sigma_P = 85.6$  mb (SAID-SP05).

\* Disagreement between experiment  $\sigma_P = 69 \pm 3(stat.) \pm 3(sys.)$  (FILTEX) and theory,  $\sigma_P = 85.6mb$  (Meyer & Budker Institute & IKP FZJ) has not been resolved.

\* Spin filtering by nuclear antiproton-proton interaction offers a solution for PAX. No direct experimental data, but theoretical models are encouraging (Contalbrigo's talk).

 $\star$  Antiproton-proton scattering: as a guidance from models it is sufficient to evaluate spin filtering of the transmitted beam.

 $\star$  Spin filtering of antiprotons must be optimized experimentally with antiprotons available elsewhere (AD ring at CERN?).

## World-First: Antiproton Polarizer Ring (APR)



Small Beam Waist at Target<br/>High Flux ABS $\beta=0.2 \text{ m}$ <br/> $q=1.5 \cdot 10^{17} \text{ s}^{-1}$ <br/>T=100 K, longitudinal Q (300 mT)<br/> $d_b=\psi_{acc}\cdot\beta\cdot2\rightarrow d_t=d_t(\psi_{acc}), \ l_b=40 \text{ cm} (=2 \cdot \beta)$ <br/> $d_f=1 \text{ cm}, \ l_f=15 \text{ cm}$ 

# **Beam lifetimes in the APR**



## Polarization Buildup: Optimum Buildup Time



Juelich models for antiproton-proton interaction (also Paris, Nijmegen...)



Bonn meson exchange: well defined G-parity is crucial

Annihilation needs extra modelling

- \* Annihilation: phenomenological optical potential (model A)
- \* Annihilation: pure field-theoretic baryon exchange (model C)



Approximation by two-meson channels, not quite realistic strength

 Annihilation: hybrid model: baryon exchange for two-meson channel optical potential for the rest (model D)

Good degree of success with total, elastic, annihilation X-sections, diifferential  $d\sigma$ (elastic), analyzing power (model A does best job)

Integrated cross sections

# for pp scattering



# Pp → Pp

## differential cross sections



model A (phenomenological annihilation)

वृष् ~ वृष्

#### analyzing powers



#### (microscopic annihilation)

----

A (phenomenological annihilation)





### Beam Polarization (Hadronic Interaction: Longitudinal Case)



Experimental Tests required: •EM effect needs protons only (COSY) •Final Design of APR: Filter test with p at AD (CERN)