Galois invariance, trace codes and subfield subcodes

Marta Giorgetti*, Andrea Previtali

Dipartimento di Fisica e Matematica, Università dell’Insubria, Via Valleggio, 11, Como–22100, Italy

A R T I C L E I N F O

Article history:
Received 26 February 2009
Revised 21 September 2009
Available online 2 February 2010
Communicated by W. Cary Huffman

Keywords:
Trace codes
Subfield subcodes
Galois invariant

A B S T R A C T

Given a Galois extension we relate subfield subcodes with trace codes showing that a code is invariant under the Galois group if and only if its restriction coincides with the trace code.
© 2010 Elsevier Inc. All rights reserved.

1. Introduction

Given a field extension \(E/K \) and a linear code \(C \) over \(E \) there are at least two constructions starting from \(C \) and leading to linear codes over \(K \). One simply considers all elements of \(C \) having components in \(K \). This is called the restriction of \(C \) to \(K \) and will be denoted with \(\text{Res}(C) \). It is also known as the subfield subcode of \(C \). The second construction exploits the field trace \(\text{Tr} \) from \(E \) to \(K \). Namely, we first extend \(\text{Tr} \) from \(E \) to \(E^n \), setting \(\text{Tr}(c) = (\text{Tr}(c_1), \ldots, \text{Tr}(c_n)) \), then define \(\text{Tr}(C) = \{\text{Tr}(c) : c \in C\} \). This is a linear code defined over \(K \) and we call it the trace code associated to \(C \). In [3] Delsarte has shown that these codes are related: the dual of the restriction of \(C \) is the trace of the dual code of \(C \) (see Theorem 3).

We now restrict our attention to Galois extensions \(E/K \). This is of course always the case when dealing with codes defined over finite fields. Let \(\Gamma \) be the Galois group of \(E \) over \(K \), \(\Gamma = \text{Gal}(E/K) \), then we say a linear code \(C \) over \(E \) is \(\Gamma \)-invariant if \(C^\gamma = C \) for all \(\gamma \in \Gamma \), where \(\gamma \) is extended in the obvious way from \(E \) to \(E^n \), \(n \) being the length of \(C \). Given a linear code \(D \) over \(K \), we may extend

* Corresponding author.
E-mail addresses: marta.giorgetti@uninsubria.it (M. Giorgetti), andrea.previtali@uninsubria.it (A. Previtali).

1071-5797/$ – see front matter © 2010 Elsevier Inc. All rights reserved.
doi:10.1016/j.ffa.2010.01.002
scalars and obtain a linear code C over E, $C = E \otimes_K D$. This code will be called the **extension** of D to E and denoted $\text{Ext}(D)$. If E/K is Galois, then $C = \text{Ext}(D)$ is a Γ^*-invariant code.

By using elementary linear algebra, we prove that extension and restriction realize a one-to-one correspondence between K-linear codes and Γ^*-invariant E-linear codes.

One direction of this correspondence (if the code is Galois invariant then its subfield subcode equals its trace code), can already be found in [5, Lemma 1], [1, Theorem 4] and [2, Theorem 12.7]. Exploiting this result we prove that

\[
\text{Res}(C) \subseteq \text{Tr}(C)
\]

always holds. One might wonder whether the inverse inclusion also holds. This is generally false, but we show that the key to equality is related to Γ^*-invariance. Namely, we show that restriction and trace lead to the same code if and only if the original code is Γ^*-invariant.

2. Trace and Galois invariant codes

Given a Galois extension E/K with Galois group Γ, we prove that extension and restriction realize a one-to-one correspondence between K-linear codes and Γ^*-invariant E-linear codes.

Theorem 1. Let E/K be a Galois extension with group Γ and C an E-subspace of E^n. Then C is Γ^*-invariant if and only if $C = \text{Ext}(\text{Res}(C))$ or, equivalently, if and only if C admits a basis in K^n.

Proof. Let D be a K-linear code, $D = \bigoplus_j K u_j$, then $\text{Ext}(D) = \bigoplus_j E u_j$ with $u_j \in K^n$. Set $C = \text{Ext}(D)$, then $C^\gamma = \bigoplus_j E u_j^\gamma = C$, since $u_j^\gamma = u_j$ for any $\gamma \in \Gamma$. Thus any extended code is Γ^*-invariant.

Conversely, assume C is a Γ^*-invariant E-linear code and let u_1, \ldots, u_k be a Gauss–Jordan reduced normalized basis, that is, the left-most non-zero entry of any u_j is 1 and the components in the same positions for the other basis elements are zero. Since a permutation of the coordinates does not affect Γ^*-invariance, we may assume that $u_i = e_i + a_i$, where e_i is the i-th standard vector and $\text{Supp}(a_i) \subseteq \{k+1, \ldots, n\}$. Now $u_i^\gamma = e_i + a_i^\gamma = \sum_j \lambda_j u_j$, for some $\lambda_j \in E$. This forces $\lambda_j = \delta_{ij}$ and $a_i^\gamma = a_i$. Thus a_i and $u_i \in K^n$. \hfill \square

Given an E-linear code C, we define the Γ^*-core of C as $C_\Gamma = \bigcap_{\gamma \in \Gamma} C^\gamma$, that is, the largest Γ^*-invariant subcode of C.

Corollary 2. $C_\Gamma = \text{Ext}(\text{Res}(C))$.

Proof. Set $T = \text{Ext}(\text{Res}(C))$. Since T is an extension–restriction code, thanks to Theorem 1, it is Γ^*-invariant, $T = T_\Gamma$. Moreover, $T \subseteq C$, thus $T \subseteq C_\Gamma$. Since C_Γ is Γ^*-invariant, $C_\Gamma = \text{Ext}(\text{Res}(C_\Gamma)) \subseteq \text{Ext}(\text{Res}(C)) = T$. \hfill \square

A celebrated result of Delsarte [3] states that restriction and trace codes are related via dualization, namely:

Theorem 3 (Delsarte). Given a Galois extension E/K and an E-linear code C, then we have

\[
\text{Res}(C)^\perp = \text{Tr}(C^\perp),
\]

where C^\perp is the orthogonal complement to C with respect to the usual scalar product.

We would like to unravel relations between $\text{Res}(C)$ and $\text{Tr}(C)$. We show they need not coincide.
Example 4. Let $K = \mathbb{F}_p(x)$, $E = K(\alpha)$, where $\alpha^p = x$. Then E/K is an inseparable extension and $\text{Tr}(C) = 0$ for any E-linear code. On the other hand, $\text{Res}(C)$ need not be zero, e.g. $\text{Res}(E^n) = K^n$.

Example 5. Let E/K be a quadratic extension with char $K \neq 2$. Then $E = K[\alpha], \alpha^2 = a \in K$ and $C = E\nu, \nu = (1, \alpha)$. Then $\text{Tr}(\nu) = (2, 0)$ and $\text{Tr}(\alpha \nu) = (0, 2a)$. Thus $\text{Tr}(C) = K^2$ while $\text{Res}(C) = 0$.

Notice that in this example $\text{Res}(C) \leq \text{Tr}(C)$. We prove this is the case if E/K is separable.

Lemma 6. For any separable extension E/K and any E-linear code C

$$\text{Res}(C) \leq \text{Tr}(C).$$

Proof. For $\nu \in K^n$, $\lambda \in E$,

$$\text{Tr}(\lambda \nu) = \text{Tr}(\lambda) \nu.$$

Since E/K is separable, there exists $\alpha \in E$ such that $\text{Tr}(\alpha) = 1$ (see [4, Corollary 8.17]). Let $\nu \in \text{Res}(C) = C \cap K^n$, then $\nu = \text{Tr}(\alpha \nu) \in \text{Tr}(C)$. \square

We prove that if C is a Γ-invariant code then $\text{Res}(C) = \text{Tr}(C)$.

Lemma 7. Let E/K be a Galois extension with group Γ. If C is an E-linear Γ-invariant code, then

$$\text{Res}(C) = \text{Tr}(C).$$

Proof. It is enough to prove that $\text{Res}(C) \geq \text{Tr}(C)$. Since C is Γ-invariant $\text{Tr}(c) = \sum_{\gamma \in \Gamma} c^\gamma \in C$. Trivially, $\text{Tr}(c) \in K^n$, then $\text{Tr}(c) \in \text{Res}(C)$. \square

We now prove that Γ-invariance is also a necessary condition. We first state an independent result.

Lemma 8. For any $\nu \in E^n, v \in \text{Ext}(\text{Tr}(Ev))$.

Proof. Since E/K is Galois, it is separable hence $B(\nu, w) := \text{Tr}(\nu w)$ defines a non-degenerate bilinear K-form on E considered as a K-vector space. Let $\lambda_1, \ldots, \lambda_m$ denote a K-basis for E. Then there exists a K-basis μ_1, \ldots, μ_m of E which is trace-dual to $\lambda_1, \ldots, \lambda_m$, that is,

$$\text{Tr}(\mu_k \lambda_j) = \delta_{kj}.$$

Let $\nu = (a_1, \ldots, a_n), a_i = \sum_j a_{ij} \lambda_j$. Then

$$\sum_k \lambda_k \text{Tr}(\mu_k a_i) = \sum_k a_{ik} \lambda_k = a_i.$$

Thus $\nu = \sum_k \lambda_k \text{Tr}(\mu_k \nu) \in \text{Ext}(\text{Tr}(E\nu))$. \square

Theorem 9. For any Galois extension E/K and any E-linear code C

$$\text{Res}(C) = \text{Tr}(C)$$

if and only if C is invariant under Γ, the Galois group of E/K.

Proof. It is enough to show that $\text{Res}(C) = \text{Tr}(C)$ forces C to be Γ-invariant. Assume C is a counterexample of minimum dimension and set $D = \bigcap_{\gamma \in \Gamma} C^\gamma$, then we claim $\dim(C/D) = 1$. In fact, let $C > V > D$ with $\dim(V/D) = 1$. Then

$$\text{Res}(C) = \text{Res}(V) = \text{Res}(D) = \text{Tr}(D) \leq \text{Tr}(V) \leq \text{Tr}(C) = \text{Res}(C).$$

Hence equality holds throughout, V is a counterexample, too, and, by minimality, $C = V$.

Therefore $C = D \oplus E_v$. Now $\text{Tr}(D) = \text{Tr}(C) = \text{Tr}(D) + \text{Tr}(E_v)$, so $\text{Tr}(E_v) \leq \text{Tr}(D)$. By Lemma 8, $v \in \text{Ext}(\text{Tr}(E_v)) \leq \text{Ext}(\text{Tr}(D)) = D$ against $D \neq C$. □

References