Orbit Lengths and Character Degrees in p-Sylow Subgroups of Some Classical Lie Groups

Andrea Previtali*

Department of Mathematics, Mainz University, 55099 Mainz, Germany

Communicated by Gernot Stroth

Received March 6, 1994

1. INTRODUCTION

Let G denote $SL(n, q)$ or $Sp(2n, q)$, the linear or symplectic group over F_q, q a p-power. Let \mathfrak{H} be a p-Sylow subgroup of G. We determine the set of conjugacy class lengths of suitable normal abelian subgroups \mathfrak{H} of \mathfrak{H} and use this information to get the character degrees of \mathfrak{H}. Given a group G acting on a vector space V, it is known that V and its dual \hat{V} are not necessarily G-equivalent, if the action is not coprime. We introduce a weaker version of G-equivalence and show that this is enough to assure equality between the set of conjugacy class lengths and character degrees when $q = p$, p odd. Some partial results are obtained when $q = p^m$, $m > 1$, using a linearization technique involving formal power series. Some results have been determined by Huppert (see [6]) for $SL(n, q)$. With a slightly different approach, we will obtain them ex novo and extend them to the symplectic case. The proof goes along the following lines:

(a) Determine a big abelian normal subgroup \mathfrak{H} of \mathfrak{H} such that

$$1 \rightarrow \mathfrak{H} \rightarrow \mathfrak{H} \xrightarrow{j} \mathfrak{H} \xrightarrow{\pi} \hat{\mathfrak{H}} \rightarrow 1$$

is a splitting exact sequence.

(b) Determine the orbit lengths of the action of $\hat{\mathfrak{H}}$ on \mathfrak{H}, where $\hat{\mathfrak{H}} = \hat{\mathfrak{H}}$ is the complement of \mathfrak{H} in \mathfrak{H}.

(c) Prove that the same lengths appear in the dual action.

(d) Use some results of Clifford’s theory to get the desired character degrees when $q = p$.

* Research supported by Dottorato dell’Università di Pisa.
2. NOTATIONS AND PRELIMINARY RESULTS

Given a group \(G \), we denote with \(\text{Irr}(G) \) the set of its irreducible characters. As standard \(G_0 \) will denote a \(p \)-Sylow subgroup of \(G \). Suppose \(\chi \in \text{Irr}(N) \), where \(N \leq G \), then \(\text{Irr}(N) \) is a \(G \)-set via \(\chi^g(x^f) = \chi(x) \), \(g \in G, \ x \in N \). Call \(I_G(\chi) = C_G(\chi) \) the inertia subgroup of \(\chi \). Set \(cdG = \{ \chi^g \mid \chi \in \text{Irr}(G) \} \). Suppose \(\Omega \) is a \(G \)-set, then \(\omega^G = \{ \omega^g \mid g \in G \} \) is the \(G \)-orbit of \(\omega \in \Omega \) and \(\Theta(\omega^G) = \{ |\omega^g| \mid \omega \in \Omega \} \).

Definition 2.1. Given two \(G \)-sets \(\Omega_1, \Omega_2 \), we say they are \(G \)-equivalent if there exists a bijection \(\sigma \) from \(\Omega_1 \) onto \(\Omega_2 \) such that \((\omega^g)^\sigma = (\omega^g)^\sigma \) for every \(g \in G \) and weak equivalent if \(\sigma(\Omega_1) = \sigma(\Omega_2) \).

Usually gothic letters will be used for groups of Lie type and capital ones for matrices. Given a matrix \(T, T^* = (T^{-1})^t \) will denote the adjoint matrix. We denote with \(E_{ij} \) the elementary matrix with entry 1 in the position \((i, j) \) and zero elsewhere.

Lemma 2.2. Suppose \(G \) is a splitting extension of its normal subgroup \(N \), then any linear character \(\lambda \in \text{Irr}(N) \) can be extended to its inertia subgroup \(I_G(\lambda) \).

Proof. Suppose \(K \) is a complement of \(N \) in \(G \), then, by Dedekind’s identity, is \(I = I_G(\lambda) = N(I_G(\lambda) \cap K) = NK \). Define \(\lambda_0(ax) := \lambda(a) \), where \(a \in N, x \in K \). Let \(ab = a'b' \), then \(a^{-1}a' = b^{-1}b' \in N \cap K = 1 \), so \(a = a', b = b' \), and \(\lambda_0 \) is well defined.

\[
\lambda_0(abxy) = \lambda_0(ab^{-1}xy) = \lambda(ab) = \lambda(a)\lambda(b) = \lambda_0(ax)\lambda_0(by) \quad (2)
\]

proves that also \(\lambda_0 \) is a character of \(I_G(\lambda) \) extending \(\lambda \) (compare also [9, Ex. 6.18] for a more general assertion).

Lemma 2.3. Suppose \(G = A \rtimes T \), where \(A \leq G \) abelian, then \(cdG = \{ \beta(1)|G : I_G(\lambda) \lambda \in \text{Irr}(A) \text{ and } \beta \in \text{Irr}(I_G(\lambda)/A) \} \).

Proof. Let \(\psi \in \text{Irr}(G) \), then \(\psi_\lambda = e(\psi) \sum \lambda_i \), hence, by Frobenius’ reciprocity law, \(e(\psi) = (\psi, \lambda) = (\psi, \lambda G) \). But, by Gallagher’s theorem (see [9, p. 85]), \(\lambda G = \sum (\lambda_0, \beta)^G, \) where \(\lambda_0 \in \text{Irr}(I_G(\lambda)) \) is a linear character extending \(\lambda \) and \(\beta \) varies in \(\text{Irr}(I_G(\lambda)/A) \). By Clifford’s theory \((\lambda_0, \beta)^G \in \text{Irr}(G) \), then \(\psi = (\lambda_0, \beta)^G \) for a suitable index \(i \). But, as easy consequence of the definition of induced character,

\[
(\lambda_0, \beta)^G(1) = \lambda_0(1)\beta_i(1)|G : I_G(\lambda)| = \beta_i(1)|G : I_G(\lambda)|, \quad (3)
\]
as asserted.
In particular, for β, the trivial character in $\text{Irr}(I_G(\lambda)/A)$, $\lambda^G_0 \in \text{Irr}(G)$, so $\lambda^G_0(1) = |G : I_G(\lambda)| \in cdG$. Our problem reduces to the search of suitable linear characters of a normal subgroup, in such a way that any character degree could be obtained as above described. It has been conjectured that for $\mathfrak{B} \in \text{Syl}_p(\mathcal{L}_q^*(\mathbb{F}_q))$, $\mathcal{L}_q^*(\mathbb{F}_q)$ a classical Lie group, $cd\mathfrak{B}$ is a set of q-powers. By the preceding lemma this would imply that $|G : I_G(\lambda)|$ is a q-power. We will prove that this holds in our setting, providing some weak evidence for this conjecture. Remark that the conjecture on character degrees is equivalent to state that $\forall A \leq G, \forall \lambda \in \text{Irr}(A)$ and $\mathfrak{B} \beta \in \text{Irr}(I_G(\lambda)/A)$, $\beta(1)$ is a q-power. Observe that in the symplectic situation $I_G(\lambda)/A \leq \mathfrak{T}_1 \times \mathfrak{T}_2$, where $\mathfrak{T}_i \in \text{Syl}_p(\text{SL}(m_i, q))$ for suitable m_i. Since any finite p-group can be embedded in such groups, the truth of the character degree conjecture would imply a strong restriction on the structure of the inertia subgroups $I_{\mathfrak{B}}(\lambda)$. We now carry over the proof distinguishing the two possible cases.

3. ORBIT LENGTHS

In [6], Huppert defined the following function:

$$ f(n) = \begin{cases}
\frac{(n - 1)^2}{4}, & n \text{ odd}, \\
\frac{n(n - 2)}{4}, & n \text{ even}.
\end{cases} \quad (4) $$

The main result of this and the next section is:

Theorem 3.4 (Orbit Lengths). Suppose $\mathfrak{B} \in \text{Syl}_p(\mathcal{L}_q^*(\mathbb{F}_q))$, where $\mathcal{L}_q^*(\mathbb{F}_q)$ is $\text{SL}(n, q)$ or $\text{Sp}(n, q)$, q odd in the symplectic case. Set

$$ g(n) = \begin{cases}
\frac{f(n)}{2}, & \mathcal{L}_q^*(\mathbb{F}_q) \text{ linear,} \\
\frac{n}{2}, & \mathcal{L}_q^*(\mathbb{F}_q) \text{ symplectic},
\end{cases} \quad (5) $$

then $\mathfrak{C}(1) = \{q^j : 0 \leq j \leq g(n)\}$.

We will need this well known lemma:

Lemma 3.5. A is a maximal abelian subgroup of G iff A is self-centralizing.

Proof. Compare [5].

3.1. The Linear Case

Theorem 3.6. \(\mathcal{V} \in \text{Syl}_p(SL(n, q)) \) is a splitting extension of a maximal abelian normal subgroup \(\mathcal{V} \).

Proof. Set \(k = n - r \) and consider

\[
\mathcal{V} = \left\{ \begin{pmatrix} I & 0 \\ A & I_k \end{pmatrix} : A \in (\mathbb{F}_q)_{k \times r} \right\}
\]

(6)

and

\[
\mathcal{X}_k = \mathcal{X} = \left\{ \begin{pmatrix} X & 0 \\ 0 & Y \end{pmatrix} : X \in SL(r, \mathbb{F}_q)_p, Y \in SL(k, \mathbb{F}_q)_p \right\};
\]

(7)

then \(\mathcal{V} = \mathcal{V} \mathcal{X}, \mathcal{V} \cap \mathcal{X} = 1 \), and \(\mathcal{V} \) is an elementary abelian normal subgroup (it is \(\mathcal{X} \)-invariant).

We now show that \(\mathcal{V} \) is maximal in \(\mathcal{A} = \{ \mathcal{C} \leq \mathcal{V} : \mathcal{C} \cap \mathcal{V} = 1 \} \). It’s enough to prove that \(\mathcal{V} \) self-centralizes. If not, by Dedekind’s identity, there is an element of \(\mathcal{X} \) commuting with every element of \(\mathcal{V} \):

\[
\begin{pmatrix} X^{-1} & 0 \\ 0 & Y^{-1} \end{pmatrix} \begin{pmatrix} I & 0 \\ A & I \end{pmatrix} \begin{pmatrix} X & 0 \\ 0 & Y \end{pmatrix} = \begin{pmatrix} I & 0 \\ Y^{-1}AX & I \end{pmatrix}.
\]

(8)

Hence \(Y^{-1}AX = A, \forall A \in (\mathbb{F}_q)_{k \times r} \). Bordering \(A \) and \(X \) as \(A = (A_1, a'_1), X = (x_1, \theta) \), we get

\[
(Y^{-1}A_1X_1 + Y^{-1}a'_1x_2, Y^{-1}a'_1) = (A_1, a'_1).
\]

(9)

Since \(a'_1 \) is arbitrary, this implies that \(Y = I \). Setting \(A_1 = I, a_1 \neq 0 \), we get \(X_1 = I \). Finally, for \(A_1 = 0, \) we get \(x_2 = 0 \). \(\square \)

We are in particular interested in those normal abelian subgroups of minimal index. This corresponds to the following choice for \(r \).

Set \(r = n \pmod{2} \), where \(r \in \{0, 1\} \) and \(r = (n + e)/2 \). The importance of establishing that \(\mathcal{V} \in \mathcal{A} \), is explained by a theorem of Itô stating that the degree of irreducible characters of a group has to divide the index of subnormal abelian subgroups. We now carry out the second step, i.e., determine the orbit lengths of \(\mathcal{V} \) considered as a \(\mathcal{X} \)-set. As will be clear at the end of the proof, we could at once attack the problem in the dual space \(\hat{\mathcal{V}} \), but our approach reflects the general philosophy of considering first the direct action (this being generally easier) and from this retrieving information on the dual action. Much is known (see [1, 4, 8]) when the
action is coprime, that is, when T is a group acting on a group A, and $(|A|, |T|) = 1$. The purpose of this approach is also to find a way to generalize such results when the action is no more coprime. The problem is that A and $\text{Irr}(A)$ need not be equivalent T-sets when coprimality drops down (see [7, Vol. II, p. 121]). It would be interesting to understand whether a weaker condition still holds:

Question. Is it true that A and $\text{Irr}(A)$, considered as T-sets are weakly equivalent?

We shift back to gothic notations. As we will see, the proof in the linear case is by far the most complex.

Theorem 3.7. $\mathcal{E}(\Pi) \supseteq \{q^j : 0 \leq j \leq f(n)\}$ where $q^{f(n)} = |\Psi : \Pi|$.

Proof. The second part of the statement is straightforward. The action on Π is described by $Y^{-1}AX$ as above seen. Since the inversion is an anti-isomorphism of $\text{SL}(k, \mathbb{F}_q)$, we may substitute Y^{-1} with Y. We distinguish the cases $n = 2k$ and $n = 2k + 1$. We will now proceed by induction on k, showing how the inductive hypothesis at the kth level implies the truth of the assertion for $n = 2k + 1, 2k + 2 = 2(k + 1)$. If $k = 1$, then $n = 1, 2$ and Ψ is abelian. By induction, $3B \in (\mathbb{F}_q)_{2k}$ which are representatives of the orbit lengths from 1 up to $q^{(k-1)}$. We refine the induction hypothesis claiming the existence of $B_0, \ldots, B_{k-1} \in (\mathbb{F}_q)_{2k}$ such that:

(a) B_i is non-singular.

(b) $|B_i| = q^{(k-1)-i}$.

We will call such matrices the carriers of long orbits.

Step 1. We first search representatives for short orbits. Just consider this partition:

$$
Y(B, b') \begin{pmatrix} T & 0 \\ t & 1 \end{pmatrix} = (YBT + Yb', Yb')
$$

and set $b = 0$. By induction, there are matrices $B \in (\mathbb{F}_q)_k$, with orbit lengths from 1 up to $q^{(k-1)}$; then $(B, 0)$ provide the same lengths.

Step 2. Consider the following situation:

$$
Y(b', B) \begin{pmatrix} 1 & 0 \\ t' & T \end{pmatrix} = (Y(b' + Bt'), YBT).
$$

Here $Y, T \in (\mathbb{F}_q)_k$ are lower triangular unipotent matrices. The idea is to get elements representing long orbits saturating the first column of the
above matrix for any choice of \(Y \). Since \(Y \) is invertible, this request does not really depend on \(Y \). In fact,

\[
\{ Y(b' + Bt') : t \in \mathbb{F}_q^k \} = \{ b' + Bt' : t \in \mathbb{F}_q^k \} = \{ Bt' : t \in \mathbb{F}_q^k \} = \mathbb{F}_q^k
\]

if and only if \(B \) represents a surjective linear operator in \(\text{End}(\mathbb{F}_q^k) \), that is, if and only if \(B \) is non-singular. But, by induction, there exist \(k \) elements \(B \), which are the carriers of long orbits at the \(k \)th level. Set, for example, \(b = 0 \), then \((0, B) \) will have orbit length \(q^{k+i-1} \), \(i = 0, \ldots, k - 1 \).

Observe that those steps provide every orbit length when \(n = 2k + 1 \).

Step 3. To get short orbit representatives, just consider

\[
\begin{pmatrix}
1 & 0 \\
t' & t
\end{pmatrix}
\begin{pmatrix}
b \\
\tilde{b}
\end{pmatrix} X =
\begin{pmatrix}
\tilde{b} X \\
t' \tilde{b} X + T \tilde{b} X
\end{pmatrix}
\] (12)

and set \(\tilde{b} = 0 \). By the comment at the end of Step 2, we get all lengths from 1 up to \(q^{k+i} \).

Step 4. Now we partition the matrix \(Y \in (\mathbb{F}_q)_k \), hence

\[
\begin{pmatrix}
T & 0 \\
t & 1
\end{pmatrix}
\begin{pmatrix}
\tilde{B} \\
\tilde{b}
\end{pmatrix} X =
\begin{pmatrix}
T \tilde{B} X \\
(t \tilde{B} + \tilde{b}) X
\end{pmatrix}.
\] (13)

Again, saturation of the last row, for any \(X \), is implied as soon as \(\tilde{B} \) is of maximal rank, that is, \(rk \tilde{B} = k \). That surely happens if we set \(\tilde{B} = (0 \ B) \), where \(B \) is a long orbit carrier in step 1. So the elements \((\tilde{b}) \) are long orbit representatives for any choice of \(b \). If we set \(\tilde{b} = e_1 \), then these are also non-singular, hence long orbit carriers. Observe that there are \(k \), with orbit length \(q^{k+i+1-i} \), \(i = 0, \ldots, k - 1 \).

Step 5. Unfortunately Step 3 provides a singular element with orbit length \(q^{k} \). To get a non-singular one, take the long orbit carrier \(B_0 \) and embed it in the non-singular matrix \((\overset{\text{B}_0}{\vphantom{\emptyset}} \overset{s}{\text{\emptyset}}) \). Then

\[
\begin{pmatrix}
T & 0 \\
t & 1
\end{pmatrix}
\begin{pmatrix}
B_0 & 0 \\
0 & 1
\end{pmatrix}
\begin{pmatrix}
S & 0 \\
s & 1
\end{pmatrix} =
\begin{pmatrix}
TB_0 S \\
tB_0 s + s & 1
\end{pmatrix}.
\] (14)

Since \(s \) varies arbitrarily in \(\mathbb{F}_q^k \), this matrix has orbit length \(q^{k+1-i} \).

Remark 3.1. The precedent proof also shows how to construct elements with a prescribed orbit length. Let us just work out the calculation when
Take the matrix (1). Bordering it as in Steps 1 and 3, we have \((\begin{smallmatrix} 0 & 0 \\ 0 & 0 \end{smallmatrix})\), which is central. Bordering it as in Steps 2 and 4, we get \((\begin{smallmatrix} 0 & 1 \\ 1 & 0 \end{smallmatrix})\) with orbit length \(q^2\). Using Step 5, we get \((\begin{smallmatrix} 0 & 1 \\ 1 & 0 \end{smallmatrix})\) with orbit length \(q\).

Remark 3.2. It is proved once more than \(\mathfrak{I}\) is a maximal abelian subgroup. In fact there are elements of maximal possible orbit length \(|A^\mathfrak{I}| = |\mathfrak{I}|\), which is equivalent to \(C_2(A) = 1\) and, by Dedekind's identity, one may conclude that \(\mathfrak{I} = C_\mathfrak{I}(\mathfrak{I})\).

3.2. The Symplectic Case

Once the theme has been settled, let us just play the variations.

Theorem 3.8. \(\mathfrak{V} \in \text{Syl}_p(\text{Sp}(2n, q))\) is a splitting extension of a maximal abelian normal subgroup \(\mathfrak{I}\).

Proof. We first investigate the structure of \(\mathfrak{V}\). As is well known, there exists, up to equivalence, just one symplectic form which can be described by the matrix

\[
E = \begin{pmatrix} 0 & I_n \\ -I_n & 0 \end{pmatrix}.
\]

Consider now the equation

\[
\begin{pmatrix} T' & B' \\ 0 & C' \end{pmatrix} \begin{pmatrix} 0 & I_n \\ -I_n & 0 \end{pmatrix} \begin{pmatrix} T & 0 \\ B & C \end{pmatrix} = \begin{pmatrix} 0 & I_n \\ -I_n & 0 \end{pmatrix},
\]

that is, \(C = T^{-t}\) and \(B = AT\), where \(A' = A\). Consider now the decomposition

\[
\begin{pmatrix} T & 0 \\ AT & T^{-t} \end{pmatrix} = \begin{pmatrix} I & 0 \\ A & I \end{pmatrix} \begin{pmatrix} T & 0 \\ 0 & T^{-t} \end{pmatrix}.
\]

\(\mathfrak{I}\) acts on \(\mathfrak{I}\) via \(A \to T'AT\); in fact,

\[
\begin{pmatrix} T^{-1} & 0 \\ 0 & T' \end{pmatrix} \begin{pmatrix} I & 0 \\ A & I \end{pmatrix} \begin{pmatrix} T & 0 \\ 0 & T^{-t} \end{pmatrix} = \begin{pmatrix} I & 0 \\ T'AT & I \end{pmatrix}.
\]

This proves that \(\mathfrak{V} = \mathfrak{I} \ltimes \mathfrak{I}\), where \(\mathfrak{I}\), \(\mathfrak{I}\) are the groups constituted by the matrices which appear as the first and the second factor, respectively, in (17). To prove that \(\mathfrak{V}\) is a \(p\)-Sylow subgroup, just consider that its order is \(q^{2(n+1)}\), but that is exactly the maximal \(p\)-power dividing the group order (see [2, Chap. I] or [3]). As in the linear case, to prove the maximality of \(\mathfrak{I}\), it is enough to show that \(T = I\), whenever \(T \in C_\mathfrak{I}(\mathfrak{I})\). Set \(A = I\),
then \(T'T = I \). So \(T = (T')^{-1} = T^* \). But \(T \) is lower triangular with 1 along the diagonal; hence, \(T = I \). □

Theorem 3.9. \(\mathcal{O}(1) \supseteq \{ q^j : 0 \leq j \leq (\xi) \} \).

Proof. Observe that \(q^j = |B^j : 1| \). Now proceed by induction on \(n \). If \(n = 1 \) there is nothing to show. Let \(n > 1 \) and partition \(A \) and \(T \) in four submatrices. Then we have

\[
\begin{pmatrix}
T' & t' \\
0 & 1
\end{pmatrix}
\begin{pmatrix}
B & b' \\
b & \beta
\end{pmatrix}
\begin{pmatrix}
T & 0 \\
t & 1
\end{pmatrix}
= \begin{pmatrix}
T'BT + t'bT + T'b't + t't\beta & T'b' + \beta t' \\
bT + \beta t & \beta
\end{pmatrix}.
\]

(19)

Step 1. By induction there are matrices \(B_i \in \Pi_{n-1} : q^i = |B_i^{2^{i-1}}| = |B_i^{2^i+1}| \), where \(B_i \) can be thought of as embedded in \(\Pi_n \) setting \(b = 0 \), \(\beta = 0 \).

Step 2. Set \(B = 0 \), \(b = 0 \), \(\beta = 1 \); then \((i_1', i_2')\) generates an orbit of length \(q^{n-1} \).

By Step 1, \(\{q^j : 0 \leq j \leq (\xi)\} \subseteq \mathcal{O}(1) \).

By Step 2, \(\{q^j : n - 1 \leq j \leq (\xi)\} \subseteq \mathcal{O}(1) \), since \((i_1', i_2')\) and \((i_1', i_2')\) vary independently. By the first observation, \(\mathcal{O}(X) \) cannot contain a greater \(q \)-power. □

Remark 3.3. We may here provide exactly a set of elements each for any orbit length. A careful analysis of the proof shows that only diagonal elements are needed. In fact, \(b = 0 \) in both cases. Consider now

\[
A(i, r) = \begin{pmatrix}
I_i & 0 & & \\
& I_{r-i-1} & & \\
& 0 & \ddots & \\
& & & 0
\end{pmatrix};
\]

(20)

that is,

\[
A(i, r) = \text{diag}\left(1, \ldots, 1, 0, 1, \ldots, 1, 0, \ldots, 0\right).
\]
Then, an easy induction argument and the proof of the precedent theorem show that \(A(i, r) \) has an orbit of length \(q^{i-1} \). Since \(A(r - 1, r) = A(0, r - 1) \), set, for uniqueness, the restriction \(0 \leq i \leq r - 2 \), where \(1 \leq r \leq n \).

4. LIE METHODS

In this section, we will prove the reverse inclusion, that is, any orbit length is a \(q \)-power, unless \(\mathfrak{g} \) symplectic and \(p = 2 \). The idea is to extend some of the methods used by Chevalley to define the finite correspondent of automorphism groups of simple Lie algebras. In his considerations a central role is played by the exponential function defined over a nilpotent \(\mathfrak{g} \)-algebra of operators. The principal obstruction in this approach is that this map cannot be defined for \(\mathbb{F}_q \)-algebras when the index of nilpotency overcomes \(p \), the characteristic of the finite field. We will prove there exists a family of maps providing bijections between particular nilpotent \(\mathbb{F}_q \)-algebras and linear groups. We will find a particularly simple map for \(\mathfrak{g} = SL(n, q) \), which will allow us to prove that every conjugacy class in \(\mathfrak{g} \) has \(q \)-power order.

Definition 4.10. Denote with \(K[[x]] \) the \(K \)-algebra of formal power series over the field \(K \).

Definition 4.11. Denote with \(\mathcal{N}_n \) the nilpotent \(K \)-algebra of strictly lower triangular matrices of \((K)_n \).

Definition 4.12. Suppose \(\mathcal{N} \) is a nilpotent algebra, denote with \(\nu(\mathcal{N}) \) the index of nilpotency of \(\mathcal{N} \), that is, the minimal integer such that \(N^r = 0 \), \(\forall N \in \mathcal{N} \).

In particular, we have \(\nu(\mathcal{N}_n) = n \).

Lemma 4.13. Suppose \(M_1, M_2 \) are elements of \(\mathcal{N}_n \), \(\mathcal{N}_r \), respectively. Let \(f = \sum_i f_i x^i \in K[[x]] \) and \(A \in (K)_n \). Set \(Y = M_1 A - A M_2 \); then

\[
f(M_1)A = Af(M_2) + \sum_{i=1}^{\infty} \left(\sum_{j=0}^{i-1} f_j M_1 Y M_2^{i-1-j} \right).
\]

Proof. We first prove by induction on \(i \) that

\[
M_1^i A = A M_2^i + \sum_{j=0}^{i-1} M_1^j Y M_2^{i-1-j}.
\] \hspace{1cm} (21)
For $i = 1$, we have $\Sigma_{j=0}^{i-1} M_i^j Y M_2^{i-j} = Y$, which is just the definition of Y.

Now

$$M_i^{i+1} A = M_i \left(AM_i^{i+1} + \sum_{j=0}^{i-1} M_i^j Y M_2^{i-j} \right)$$

$$= AM_i^{i+1} + Y M_2^{i} + \sum_{j=0}^{i-1} M_i^j M_2^{i-j}$$

$$= AM_i^{i+1} + \sum_{j=0}^{i} M_i^j Y M_2^{i-j}, \hspace{1cm} (22)$$

completing the induction step. Multiply now by f_i and sum up. Observe that the number of summands is actually finite by the nilpotency of M_i.

We now need to establish some facts about nilpotent commutative algebras.

Lemma 4.14. Suppose x, y are nilpotent operators and $xy = yx$. Set $\nu(x) = i$ and $\nu(y) = j$, then $(x + y)^{i+j-1} = 0$; in particular, $x + y$ is nilpotent.

Proof. Use the binomial theorem and observe that $x^n y^m = 0$ whenever $n + m \geq i + j - 1$.

Definition 4.15. Set $\Phi_{M_1, M_2} (Y) = \Sigma_{i=0}^{i} \Sigma_{j=0}^{i-1} f_i M_i^j Y M_2^{i-j-1}$, where $Y \in (K)_{K \times r}$ and $M_1 \in \mathcal{A}_i$, $M_2 \in \mathcal{A}_j$.

Lemma 4.16. If $Y \in (K)_{K \times r}$ and $M_1 \in \mathcal{A}_i$, $M_2 \in \mathcal{A}_j$, then $\Phi_{M_1, M_2} (Y)$ is a linear operator in Y and is invertible if and only if $f_1 \neq 0$.

Proof. The linearity is obvious. Denote now with $\lambda = \lambda M_i$ the operator $Y \lambda \rightarrow M_i Y$ and with $\rho = \rho_{M_2}$ the operator $Y \rho \rightarrow Y M_2$. Clearly λ and ρ are commuting nilpotent operators. Now

$$\Phi_{M_1, M_2} = \sum_{i \geq 0} f_{i+1} \sum_{j} M_i^{j} Y M_2^{i-j} = f_1 I + \sigma. \hspace{1cm} (23)$$

Applying the preceding lemma repeatedly, we see that σ is a nilpotent operator. Hence Φ_{M_1, M_2} is invertible iff $f_1 \neq 0$.

Suppose now that $\text{char} K = 0$ or $n \leq \text{char} K$, then $\exp(M) = \Sigma_{i=0}^{\infty} M^i/i!$ is well defined for every element in \mathcal{A}_n. Suppose $Y = 0$, then we have the following result:

Corollary 4.17. Suppose $M_1 A + AM_2 = 0$, $M_i \in \mathcal{A}_n$ and $A \in (K)_{n}$, then $\exp(M_1) A \exp(M_2) = A$.
Proof. Simply observe that \(\exp(-M_2) = \exp(M_2)^{-1} \) and apply Lemma 4.13.

We point out two facts:

(a) We have used the well known property of the classical exponential map \(\exp(-x) = \exp(x)^{-1} \) over \(\mathbb{C} \). This property carries over even when \(\exp \) is defined as a formal power series repeating exactly the proof for the complex case.

(b) The last result provides a correspondence between nilpotent operators and elements that, roughly speaking, centralize the matrix \(A \).

The aim is to construct a bijection from \(\mathcal{N}_n \) onto \(\mathfrak{g}_n \), where \(\mathfrak{g}_n \) denotes the unipotent lower triangular matrices in \((K)_n \), through a suitable power series \(f \) sharing some of the properties of the exponential map. To attain a simpler notation, we will not distinguish between the power series \(f \) and the operator induced by it on \(\mathcal{N}_n \).

Theorem 4.18. There exists \(f = 1 + x + \sum_{i \geq 2} f_i x^i \in \mathbb{F}_q[[x]] \), \(p > 2 \), with the following properties:

(a) \(f(N) = f(N)^{-1} \) \(\forall N \in \mathcal{N}_n \).

(b) \(f(M_1)A f(-M_2) = A \leftrightarrow M_1A = AM_2 \).

(c) \(f \) induces a bijection from \(\mathcal{N}_n \) onto \(\mathfrak{g}_n \).

Observe that we do not require \(\dim M_1 = \dim M_2 \).

Proof. Set \(f(x) := \sum_{i \geq 0} f_i x^i \). We will show that for \(p > 2 \) it is possible to determine the coefficients \(f_i \in \mathbb{F}_q \) in such a way that the above conditions are satisfied.

Step 1. Given \(N \in \mathcal{N} \), clearly \(f(N) \) is lower triangular and unipotency is equivalent to \(f_0 = 1 \).

Step 2. Set \(g(x) = f(x) f(-x) = \sum_{i \geq 0} c_i x^i \). Clearly \(g(x) = g(-x) \), hence \(c_{2i+1} = 0 \). We have only to consider the conditions

\[
\begin{align*}
 c_0 &= 1 \\
 c_i &= 0 \quad 0 < i < n.
\end{align*}
\]

(24)

Now \(c_0 = f_0^2 = 1 \). Suppose we determined \(f_i \) for \(i < 2k \). The condition \(c_{2k} = 0 \) is satisfied as soon as

\[
2 f_{2k} = 2 f_{2k-1} f_1 - 2 f_{2k-2} f_2 + \cdots + 2(-1)^{k+1} f_{k+1} f_{k-1} + (-1)^{k+1} f_k^2,
\]

(25)
which is solvable in f_{2k}^1 since $p > 2$. Observe that no condition is given on the odd indexed coefficients.

Step 3. By Lemma 4.13, with $Y = 0$, we already still know that
\[M_1 A = A M_2 \Rightarrow f(M_1) A = A f(M_2) = A f(-M_2)^{-1}. \]
Conversely, let T be a unipotent matrix. As we will prove in the next step, there exists $N \in \mathcal{X}$ such that $T = f(N)$. Define Y so that $M_1 A = A M_2 + Y$. Then $\Phi_{M_1, M_2}(Y) = 0$. By Lemma 4.16, $f_1 = 1$ implies $Y = 0$.

Step 4. We must now prove that f actually induces a bijection from \mathcal{X} onto \mathcal{X}_n. It is clearly enough to determine a power series h centered in the identity such that $h(f(N)) = N$. In such a case h would be defined on all of \mathcal{X} since $T - I$ is nilpotent whenever $T \in \mathcal{X}$. This implies immediately that f induces an injective map from \mathcal{X} into \mathcal{X}_n. Since $|\mathcal{X}_n| = q^{\frac{n}{2} + 1} = |\mathcal{X}|$, clearly f induces also a bijection. Set now $h(y) = \sum_{j \geq 0} h_j (y - 1)^j$. Since $f(0) = I$, then $h_0 = 0$. Substituting formally y with $\sum_{j \geq 0} f_j x^j$, we get

\[\sum_{i \geq 1} h_i \left(\sum_{j \geq 1} f_j x^j \right)^i = x. \]

(26)

Collecting x^j in each summand we see that this system is equivalent to a set of equations involving just a finite number of coefficients h_i each time. More precisely, $h_i = f_i = 1$. Again by induction, suppose we have determined every coefficient h_i with $i < k$, then $h_k = s(h_1, \ldots, h_{k-1}, f_k)$, where $0 \leq j < n$, for some term s depending on the coefficients enclosed by the parentheses.

Observe that $M_1 A = A M_2$ is a linear condition in the entries of M_1, hence the number of solutions of this equation over \mathbb{F}_q is actually a q-power and clearly this holds for the corresponding image via f. Specializing M_1, M_2, A, n, we are in the position to prove that the orbit lengths are only q-powers. We start with the linear case, where a slightly more general result holds.

Theorem 4.19. Let \mathfrak{B} be the p-Sylow subgroup of $GL(n, q)$, then $\forall g \in \mathfrak{B}, |g^{\mathfrak{B}}|$ is a q-power.

Proof. It is enough to show that $|C_{\mathfrak{B}}(g)|$ is a q-power. Suppose $g = I + N$, where N is a strictly lower triangular matrix, then

\[(I + N)(I + M) = (I + M)(I + N) \Leftrightarrow I + M \in C_{\mathfrak{B}}(g). \]

(27)

But this is equivalent to $NM = MN$, which is a linear condition in the entries of M.

Observe that no restriction on \(p \) is needed for the preceding result.

We can now prove that the \(\Xi \)-orbit in \(\mathfrak{H} \) have only \(q \)-power order, completing the proof of Theorem 3.4.

Theorem 4.20. \(\mathfrak{S}(\mathfrak{H}) \subseteq \{ q^j \mid 0 \leq j \leq g(n) \} \) unless \(\mathfrak{H} \) is symplectic and \(p = 2 \).

Proof. It is enough to declare which matrices play the role of \(M_1, M_2, A \) and observe that \(f(N') = f(N) \).

(a) In the symplectic case let \(M_1 = N' \), \(M_2 = -N \), \(A \) symmetric, where all matrices have dimension \(n \).

(b) In the linear case, just apply Theorem 4.19.

Remark 4.1. To show the elegance of this approach, we will prove once again that the matrices described in the symplectic case have the required orbit lengths. Consider first \(A = A(I, r) = \left(\begin{smallmatrix} I & b \\ 0 & 0 \end{smallmatrix} \right) \). Then \(N'A + AN = 0 \) is equivalent to

\[
\begin{pmatrix}
N' & M' \\
0 & L'
\end{pmatrix}
\begin{pmatrix}
I & 0 \\
0 & 0
\end{pmatrix}
+
\begin{pmatrix}
I & 0 \\
0 & 0
\end{pmatrix}
\begin{pmatrix}
N & 0 \\
M & L
\end{pmatrix}
= 0;
\]

that is, \(N = 0 \). Hence this equation has \(q^{(n-r)+r+1} \) solutions. But this is also the order of the centralizer of \(A \). It follows that the orbit length is \(q^{(r^2-r)-r(n-r)} = q^{r^2} \). Let now \(A = A(I, r) \). Without restriction we may think that \(r = n \). Set \(s = n - l - 1 \), then

\[
\begin{pmatrix}
N' & a & M' \\
0 & 0 & b \\
0 & 0 & L'
\end{pmatrix}
\begin{pmatrix}
I & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & I_r
\end{pmatrix}
+
\begin{pmatrix}
I & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & I_r
\end{pmatrix}
\begin{pmatrix}
N & 0 & 0 \\
M & b' & L
\end{pmatrix}
\]

is the zero matrix and this implies \(N, M, L, b \) must annihilate. The only term surviving is the vector \(a \) which can be chosen in \(q^l \) ways, so the corresponding orbit length for the element \(A \) is \(q^{r^2-l} \).

An interesting question is whether every conjugacy class in these groups has \(q \)-power order.

5. CHARACTER DEGREES

We will finally prove that the restriction \(q = p \) forces \(cdA = \mathfrak{S}(\mathfrak{H}) \).

We provide a correspondence between \(\mathfrak{H} \) and \(\mathfrak{H} \), considered as sets of matrices, which induces a weak \(\Xi \)-equivalence; that is, \(\mathfrak{S}(\mathfrak{H}) = \mathfrak{S}(\mathfrak{H}) \).
Definition 5.21. Consider
\[A = \sum_{1 \leq i \leq k} \sum_{1 \leq j \leq r} a_{ij} E_{ij} \in (K)_{k \times r} \]
and define
\[A^t := \sum_{1 \leq i \leq k} \sum_{1 \leq j \leq r} a_{k-i, j-i} E_{ij} \in (K)_{r \times k}. \]

We will call s the reflection or specular operator (Spiegelung operator).

Observe that s corresponds to the reflection along the diagonal starting from the bottom left corner. We provide a more manageable description of the reflection operator.

Lemma 5.22. Let $J_i = \sum_{j=1}^i E_{ij} \cdots$ and A as above, then $A^t = J_i A^t J_i$.

Proof. Set $A = \sum_{i=m}^r a_{im} E_{im}$, then
\[\sum_{i=1}^r E_{i, r+1-i} \sum_{1 \leq m \leq r} \sum_{1 \leq l \leq k} a_{im} E_{mi} \sum_{j=1}^k E_{k+1-j, l} = \sum_{1 \leq l \leq k} a_{k+1-j, r+1-i} E_{ij}, \] as asserted. □

Observe that $J_i = J_i^t = J_i^{-1} = J_i^t$.

Corollary 5.23. Suppose dimension matches. Then $(AB)^t = B^t A^t$.

Proof. Let $A \in (K)_{k \times r}$, $B \in (K)_{r \times m}$. Then $(AB)^t = J_m (AB) J_k = J_m B^t J_i A^t J_k = B^t A^t$. □

Hence, for $k = r = m$, s is an involutory ring anti-automorphism of $(K)_k$.

Corollary 5.24. Denoting with s and t the reflection and transposition operator, we have $st = ts$.

Proof. $A^{st} = \sum_{i=m}^r a_{im} E_{mi} = J_k A J_i = A^t$. □

For $r = k$, it turns out that st is an automorphism of the central simple algebra (K), and, by a theorem of Noether and Skolem, it would be an inner one, precisely that induced by conjugation by J.

The second ingredient of the proof is a lemma establishing how the dual action can be expressed in terms of matrices.

Definition 5.25. Given a matrix $A \in (F_q)_r$, let $\tau(A) = Tr_{F_q \rightarrow F_p}(Tr(A))$.

Lemma 5.26. Let $V = (F_q)_{k \times r}$ and define $\hat{\tau} : V \rightarrow Hom(V, F_p)$ by $\hat{\tau}(B) = \tau(A^t B)$. Then $\hat{\tau}$ is an F_p-isomorphism.
Proof. F_p-linearity is clear. By finite dimensionality, it is enough to show that τ is injective. In fact, let $A = \sum_{m,j} a_{m,j} E_{lm}$ and $B = bE_{ij}$ then

$$0 = \tau \left(\sum_{m,j} a_{m,j} E_{lm} b E_{ij} \right) = \text{Tr}_{F_p^*} (ba).$$

(31)

Since $\text{Tr}(F_p) = F_p$ and b is arbitrary, this forces $a_{m,j} = 0$, $j = 1, \ldots, k$, $i = 1, \ldots, r$. \blacksquare

Lemma 5.27. Let $\tilde{\mathcal{X}} = \left((T_1, 0, T_2) \right)$, where T_1, T_2 are unipotent lower triangular matrices of dimension r, k. Let $V = (F_p^k)_{k-r}$ be endowed with a $\tilde{\mathcal{X}}$-set structure via $A^T = T_1 A T_2$, where $T = \left(\begin{smallmatrix} T_1 & 0 \\ 0 & T_2 \end{smallmatrix} \right) \in \tilde{\mathcal{X}}$. Then the induced $\tilde{\mathcal{X}}$-action on $\text{Hom}(V, F_p)$ is described by $A^T = T_2 A T_1^*$. In particular, $C_{\tau}(A) = \{ T \in \tilde{\mathcal{X}} : A = T_2 A T_1^* \}$.

Proof. We remark that for an arbitrary G-module M, the induced action on the dual space \tilde{M} is given by $\mu'(m) = \mu(m^*)$. Now

$$(\tilde{A})^T(B) = \tilde{A}(B^T) = \tau(A^T T_2^{-1} B T_1^{-1})$$

$$= \tau(T_1^{-1} A^T T_2^{-1} B) = \tau((T_2^* A T_1^*)^T B)$$

$$= T_2^* A T_1^*(B).$$

(32)

It follows that $\tilde{A} = \tilde{A}$ if and only if $\tilde{A} = T_2^* A T_1^*$. The second part of the lemma is a simple consequence of the injectivity of τ. \blacksquare

Theorem 5.28 (Weak Equivalence). Let $\tilde{\mathcal{X}}$ be as in Lemma 5.27 and $\mathfrak{l} = \left(\begin{smallmatrix} T_1 & 0 \\ 0 & T_2 \end{smallmatrix} \right) : A \in (F_p^k)_{k-r}$. Then \mathfrak{l} and $\overset{\sim}{\mathfrak{l}}$ are weakly equivalent $\tilde{\mathcal{X}}$-sets.

Proof. $B^\mathfrak{l} = (T_2 B T_1)$ where T_i varies in the set of unitriangular lower matrices of suitable dimension. Now the $\tilde{\mathcal{X}}$-orbit of $B^\mathfrak{m} \in \tilde{V}$ is

$$\left\{ T_2^* B^\mathfrak{m} T_1^* \right\} = \left\{ (T_2^* B T_1^{-1})^T \right\}.$$

Since the map $T \rightarrow T^{-1}$ is an automorphism of the group of unitriangular lower matrices and * is one-to-one, this set has the same order as the $\tilde{\mathcal{X}}$-orbit of $B \in V$. Hence $\sigma(\mathfrak{m}) \subseteq \sigma(\overset{\sim}{\mathfrak{m}})$. The converse inclusion follows analogously. \blacksquare

We now consider the symplectic case.

Lemma 5.29. Let $\mathfrak{h} = \left(\begin{smallmatrix} 0 & F_q^r \\ F_q^r & 0 \end{smallmatrix} \right)$, where T is a unipotent lower triangular matrix of dimension n. Let V, the set of symmetric matrices in $(F_q)^n$, q odd.
be endowed with the structure of a \(\mathcal{X} \)-set via \(A^3 = T'AT \), where \(S = (t_{i,j}) \in \mathcal{X} \). Define \(\lambda : V \to \text{Hom}(V, F_\mathbb{P}) \) via \(\lambda(A) = \tau(A'B) \), then:

(a) For any \(\lambda \in \text{Hom}(V, F_\mathbb{P}) \) and \(B \in V, \exists! A \in V \) such that \(\lambda(B) = \hat{A}(B) \),

(b) \(\hat{V} = \text{Hom}(V, F_\mathbb{P}) \),

(c) \(\hat{A} = T'^{-1}AT^* \),

(d) \(C(A) = \{ S \in \mathcal{X} : A = T^{-1}AT^* \} \).

Proof. The part relative to the structure of \(\text{Hom}(V, F_\mathbb{P}) \) as a \(\mathcal{X} \)-set is a particular case of Lemma 5.27 when \(k = r = n \) and \(T = T' \). We need to assure the regularity of the bilinear form \(\langle , \rangle : V \times V \to F_\mathbb{P} \), defined by \((A, B) = \tau(A'B) \). It is enough to show that \(\hat{V} \to \text{Hom}(V, F_\mathbb{P}) \) is surjective. By Lemma 5.26, any \(\mu \in \text{Hom}(F_q, F_\mathbb{P}) \) is of the form \(\hat{C} \), where \(C \in (F_q)^n \).

We prove that \(\lambda = \mu_\mathcal{A} \), the restriction of \(\mu \) to symmetric matrices, is of the form \(\hat{A} \) for some symmetric matrix \(A \). Let \(B \) be symmetric, then

\[
(C, B) = \tau(C'B) = \tau(B'C) = \tau(CB) = (C', B).
\]

Since \(q \) is odd, \((C, B) = \frac{1}{2}(C' + C), B = (A, B), \) where \(A = \frac{1}{2}(C' + C) \) is the symmetric matrix for which we were looking.

Theorem 5.30 (Weak Equivalence). Let \(\mathcal{X} \) be as in Lemma 5.29 and \(\mathcal{I} = \{(t_{i,j}) : A \in (F_q)^n, A' = A \} \). Then \(\mathcal{I} \) and \(\hat{\mathcal{I}} \) are weakly equivalent \(\mathcal{X} \)-sets.

Proof. We will show that the reflection operator induces a weak equivalence between \(\mathcal{I} \) and its dual. Observe that the operator group is closed under \(s \). The \(\mathcal{X} \)-action is given by \(T'BT \), where \(B \) is symmetric. By Corollary 5.23, we have

\[
(T'BT)^s = T'B'(T')^s.
\]

Set \(S^{-1} = T' \), then, by Corollary 5.24, \(S^* = (T')^s \). Hence the reflected image is \(S^{-1}B'S^* \). But, by Lemma 5.29, this term describes the dual action. Since \(s \) is a bijection onto \(\mathcal{X} \), this implies that

\[
|B^s| = |(B')^s|,
\]

where \(^s \) suggests that \(\mathcal{X} \) is acting on the dual space. Hence \(\mathcal{E}(\mathcal{I}) \subseteq \mathcal{E}(\hat{\mathcal{I}}) \).

By Lemma 5.29, we obtain analogously the converse inclusion.
With the usual restriction $p \neq 2$ when Ψ is symplectic, the following statement holds:

Corollary 5.31. Let $\lambda \in Irr(\Pi)$, then $|I_{q}(\lambda) : \Pi|$ is a q-power.

Proof. This follows by weak equivalence and Theorem 4.20.

The necessity of the condition $p \neq 2$ in the symplectic case was pointed out to me by Isaacs. One can show that for the Ξ-set V of symmetric matrices in $(\mathbb{F}_{q})_{2}$, q even, $\sigma(V) = \{1, q\}$, but $\sigma(V) = cd\Psi = \{1, q/2, q\}$. Hence Π, $\hat{\Pi}$ are not weakly Ξ-equivalent and the character degrees conjecture is false in even characteristic. We now show that the restriction $q = p$ implies:

Theorem 5.32 (Character Degrees). Suppose $\Psi \in Syl_{p}(\mathcal{S}_{n}(\mathbb{F}_{p}))$, where $\mathcal{S}_{n}(\mathbb{F}_{p})$ is $SL(n, p)$ or $Sp(n, p)$. Set

$$g(n) = \begin{cases}
 f(n), & \mathcal{S}_{n}(\mathbb{F}_{p}) \text{ linear,} \\
 n/2, & \mathcal{S}_{n}(\mathbb{F}_{p}) \text{ symplectic,}
\end{cases}$$

then $cd\Psi = \{p^j : 0 \leq j \leq g(n)\}$.

Proof. Unless the symplectic case in even characteristic, $\sigma(\Pi) = \sigma(\hat{\Pi})$ by Theorems 5.28 and 5.30. By Lemma 2.3, $\sigma(\hat{\Pi}) \subseteq cd\Psi$. By Itô's theorem equality holds. In the remaining case, Lemma 5.29 assures only that $\sigma(\Pi) \subseteq \sigma(\hat{\Pi})$, but the restriction $q = 2$ forces again equality.

Isaacs has recently established that the character degrees of the p-Sylow subgroup of $SL(n, q)$ are only q-powers. The author, using a similar procedure, extended this result to the symplectic case in odd characteristic. This shows that the restriction $q = p$ is not necessary in Theorem 5.32.

Acknowledgment

This paper is part of the author's dissertation written under the direction of Professor B. Huppert. The author thanks Professor Huppert for his helpful suggestions.

References

1. R. Brauer, On groups whose order contains a prime number to the first power I. *Amer. J. Math.*, 64 (1942), 401–420.