On a conjecture concerning character degrees of some *p*-groups

By

ANDREA PREVITALI

1. Introduction. It has been conjectured that the character degrees of $P \in \operatorname{Syl}_p(A_n(q))$, $q \, a \, p$ -power, are q-powers. This has recently been established by Isaacs [1]. We extend this result to the p-Sylow subgroups of $C_n(q)$, $D_n(q)$ and ${}^2A_{2n-1}(q^2)$, p an odd prime. This result was proved by Kazhdan [2] under the restriction n < p, which allows him to define the exponential map on the Lie algebra L(P) associated to P. On the other hand, Isaacs shows that the character degrees of P are q-powers, whenever P is an algebra group over \mathbb{F}_q . Unfortunately, it is not clear whether this applies to our cases. To solve this problem, we define a map sharing some of the properties of the exponential map, with the advantage of being defined whenever p is odd, and prove that some suitable sections of P are strong subgroups.

2. Preliminary results. Let G denote one of the above mentioned groups of Lie type and set $F = \mathbb{F}_{q^m}$, where m = 2 when $G = {}^2A_{2n-1}(q^2)$ and m = 1 otherwise. Let α be the identity automorphism of \mathbb{F}_q for $G = C_n(q)$, $D_n(q)$ or the conjugation $x^{\alpha} = \overline{x} = x^q$ in \mathbb{F}_{q^2} , when $G = {}^2A_{2n-1}(q^2)$. Define β on $(F)_n$ by $A^{\beta} = A$, -A or $-\overline{A}$ for $G = C_n(q)$, $D_n(q)$ or ${}^2A_{2n-1}(q^2)$. Let T^* denote $(T^1)^{-1}$ and $U_n(F)$ the p-Sylow subgroup of SL(n, F) constituted by unitriangular lower matrices. E_{ij} stands for the elementary matrix with entry 1 in the position (i, j), zero otherwise. We recall some of Isaacs' definitions. Given a group P, we say that P is an algebra group over F, if P = 1 + J(A), where A is an associative finite dimensional algebra over the field F and J(A) denotes its Jacobson radical. We say that C is an algebra subgroup of P if $C \leq P$ and C is an algebra group. S is a strong subgroup of P if $|S \cap C|$ is a q-power for every algebra subgroup C of P. We say that P is a q-power-degree group if the degree of every irreducible character of P is a q-power.

Lemma 1. Let G be one of $C_n(q)$, $D_n(q)$ or ${}^2A_{2n-1}(q^2)$ and define the groups $N = \left\{ \begin{pmatrix} I & 0 \\ A & I \end{pmatrix} : A^t = A^\beta \in (F)_n \right\}, K = \left\{ \begin{pmatrix} T^\alpha & 0 \\ 0 & T^* \end{pmatrix}, T \in U_n(F) \right\}$. Then K normalizes N, $N \cap K = 1$ and P = NK is a Sylow p-subgroup of G.

Proof. It is enough to count the order of KN and observe that the matrices of this form preserve the scalar product defined by the matrix $E = \begin{pmatrix} 0 & I_n \\ -I_n & 0 \end{pmatrix}$ in the symplectic case and by $E = \begin{pmatrix} 0 & I_n \\ I_n & 0 \end{pmatrix}$ in the orthogonal and unitary ones.

We now determine the structure of the inertia subgroup $I_P(\lambda)$, where $\lambda \in \text{Irr}(N)$. Denote with Tr the trace map from F onto \mathbb{F}_p and set $\tau(A) = \text{Tr}(\sum a_{ii})$, where $A = (a_{ij}) \in (F)_n$.

Lemma 2. Let $V = \{A \in (F)_n : A^\beta = A^t\}$, where F is a finite field of odd characteristic. Let V be endowed with a K-set structure via $A^R = T^t A T^\alpha$, where $R = \begin{pmatrix} T^\alpha & 0 \\ 0 & T^* \end{pmatrix}$

- Define $\phi: (F)_n \longrightarrow \text{Hom}((F)_n, \mathbb{F}_p)$ via $A^{\phi}(B) = \tau(AB)$, then
- 1. $V^{\phi} = \operatorname{Hom}(V, \mathbb{F}_p),$
- 2. $(A^{\phi})^{R} = (T^{-\alpha}AT^{*})^{\phi}$,
- 3. $C_K(A^{\phi}) = \{R \in K : A = T^{\alpha}AT^t\}.$

Proof. Set $W = (F)_n$. We first prove that ϕ is a \mathbb{F}_p -isomorphism between W and Hom (W, \mathbb{F}_p) . \mathbb{F}_p -linearity is clear. By finite dimensionality, it suffices to show that ϕ is injective. In fact consider $A = \sum_{m,l} a_{ml} E_{ml}$ and $B = b E_{ij}$ in W, then

(1)
$$0 = \tau \left(\sum_{m,l} a_{ml} E_{ml} b E_{ij} \right) = \operatorname{Tr} \left(b a_{ji} \right).$$

Since Tr $(F) = \mathbb{F}_p$ and b is arbitrary, this forces $a_{ji} = 0$, hence A = 0. We prove $V^{\phi} =$ Hom (V, \mathbb{F}_p) when V is the set of symmetric matrices in W. Since $W^{\phi} =$ Hom (W, \mathbb{F}_p) , any $\mu \in$ Hom (W, \mathbb{F}_p) is of the form C^{ϕ} with $C \in W$. We show that $\lambda = \mu_V$, the restriction of μ to V, is of the form A^{ϕ} for $A \in V$. Let B be an element in V, then

$$\tau(CB) = \tau(B^t C^t) = \tau(BC^t) = \tau(C^t B)$$

Since q is odd, $\tau(CB) = \tau(\frac{1}{2}(C^t + C)B) = \tau(AB)$, where $A = \frac{1}{2}(C^t + C)$ is the symmetric matrix we were looking for. The orthogonal case follows in the same way and, for the unitary one, we need only to observe that \mathbb{F}_n is elementwise fixed by conjugation.

We finally remark that for an arbitrary G-module M, the induced action on the dual space \hat{M} is given by $\mu^{g}(m) = \mu(m^{g^{-1}})$. Now

$$(A^{\phi})^{R}(B) = (A^{\phi})(B^{R^{-1}}) = \tau (AT^{*}BT^{-\alpha})$$

= $\tau (T^{-\alpha}AT^{*}B) = (T^{-\alpha}AT^{*})^{\phi}(B),$

proving the last two statements.

Let ε denote a primitive *p*-th root of unity in \mathbb{C} . Apart from composition with the map defined by $v(a) = \varepsilon^a$, for $a \in \mathbb{F}_p$, we can identify A^{ϕ} with a linear character of N. With this abuse of notation the following statement holds

Corollary 1.
$$I_P(A^{\phi})/N \cong \{T \in U_n(F) : T^{\alpha}AT^t = A\}.$$

Proof.
$$\{T \in U_n(F): T^{\alpha}AT^t = A\} \cong C_K(A^{\phi}) \cong I_P(A^{\phi})/N.$$

By classical Clifford's techniques, since

$$1 \longrightarrow N \longrightarrow I_{P}(\lambda) \longrightarrow I_{P}(\lambda)/N \longrightarrow 1$$

is a splitting sequence for all $\lambda \in Irr(N)$, λ is extendible to a character $\lambda_0 \in I_P(\lambda)$ and, by Gallagher's theorem,

$$\operatorname{Irr}\left(I_{P}(\lambda) \mid \lambda\right) = \left\{\lambda_{0} \, \mu : \mu \in \operatorname{Irr}\left(I_{P}(\lambda)/N\right)\right\}.$$

Hence P is a q-power-degree group if this holds for $I_P(\lambda)/N$ and if $I_P(\lambda)$ has q-power index in P for every $\lambda \in Irr(N)$. Following Isaacs' paper, this follows once we show that $I_P(\lambda)/N$ is a strong subgroup. For this purpose, we define a map f from \mathcal{N}_n , the nilpotent algebra of lower triangular matrices of dimension n over F onto $U_n(F) = I + \mathcal{N}_n$.

Lemma 3. Set $C_n = \frac{1}{n+1} {\binom{2n}{n}}$, then C_n is an integer (C_n is also called the n-th Catalan number).

Proof. C_n satisfy the quadratic recurrence relation $C_n = \sum_{k=1}^n C_{k-1} C_{n-k}$ and $C_0 = 1$ (see [3], page 41), hence C_n is an integer.

Theorem 1. Let F be a finite field of odd characteristic, \mathcal{N}_n the nilpotent algebra of strictly lower triangular matrices over F and $U_n(F) = I + \mathcal{N}_n$, then there exists $f \in F[[x]]$ satisfying the following conditions:

- 1. $\forall X \in \mathcal{N}_n, f(-X) = f(X)^{-1}.$
- 2. f induces a bijection from \mathcal{N}_n onto $U_n(F)$.
- 3. $\forall A \in (F)_n, X, Y \in \mathcal{N}_n, f(Y) A f(X) = A \Leftrightarrow YA + AX = 0.$

Proof. Set $f(x) = \sqrt{x^2 + x}$, where the determination of the sign is such that (0) = 1. Formally

$$f(x) = \sum_{k=0}^{\infty} {\binom{\frac{1}{2}}{k}} x^{2k} + x$$

Now

$$\binom{\frac{1}{2}}{k} = \frac{(-1)^{k-1}}{2^{2k-1}} \frac{1}{k} \binom{2k-2}{k-1} = \frac{(-1)^{k-1}}{2^{2k-1}} C_{k-1},$$

where $C_{-1} = -\frac{1}{2}$.

By Lemma 3

$$(x) = \sum_{k=0}^{\infty} \frac{(-1)^{k-1}}{2^{2k-1}} C_{k-1} x^{2k} + x$$

is well-defined, whenever the characteristic is odd. For any $X \in \mathcal{N}_n$, f(X) exists and belongs to C(X), the centralizer of X in $U_n(F)$, and

$$f(X) f(-X) = (\sqrt{I + X^2} + X) (\sqrt{I + X^2} - X) = I.$$

Set f(X) = T, then $I + X^2 = T^2 - 2TX + X^2$ and $X = \frac{T - T^{-1}}{2}$, hence f is injective. Since \mathcal{N}_{i} is finite f induces a bijection. Suppose SAT = A, where T = f(X) and S = F(Y), then $X = \frac{T - T^{-1}}{2}$, $Y = \frac{S - S^{-1}}{2}$ and

$$YA + AX = \frac{1}{2} \left(SA - AS^{-1} + AT - AT^{-1} \right) = 0.$$

Conversely, if YA = -AX, then, for every power series g, we have

$$g(Y)A = Ag(-X)$$

In particular, for g = f, we get f(Y) A f(X) = A. \Box

Lemma 4. Suppose C = I + L is an algebra subgroup of $U_n(F)$, where L is a subalgebra of \mathcal{N}_n , then C = f(L).

Proof. Since L is an algebra, $f(L) \subseteq I + L$. The converse inclusion follows from |f(L)| = |L| = |I + L|. \Box

Corollary 2. $S = I_P(\lambda)/N$ is a strong subgroup for every $\lambda \in Irr(N)$.

Proof. By Corollary 1 and Theorem 1, we know that, up to isomorphism, S = f(M), where M is the \mathbb{F}_q -vector space $\{Z \in \mathcal{N}_n : Z^{\alpha}A + AZ^t = 0\}$ and $\lambda = A^{\phi}$. Let C = I + Lbe an algebra subgroup of $U_n(F)$, then $S \cap C = f(M \cap L)$. But $M \cap L$ is a \mathbb{F}_q -vector space, so its order is a q-power. Since f is one-to-one, this holds for $|S \cap C|$ also. \Box

By Theorem D in [1], it follows that S is a q-power-degree group and S has q-power order. By the remarks preceding Theorem 1, we obtain

Theorem 2. If $P \in Syl_p(G)$, $G = C_n(q)$, $D_n(q)$, or ${}^2A_{2n-1}(q^2)$, q odd, then P is a q-power-degree group.

References

[1] I. M. ISAACS, Characters of groups associated with finite algebras. Submitted to J. Algebra

[2] D. KAZHDAN, Proof of Springer's hypothesis. Israel J. of Math. 28, 272-286 (1977).

[3] H. WILF, Generatingfunctionology. San Diego 1990.

Eingegangen am 20. 9. 1994*)

Anschrift des Autors:

Andrea Previtali Via S. Eurosia, 15 I-22064 Casatenovo (CO) Italia

*) Eine revidierte Fassung ging am 28. 2. 1995 ein.