On a conjecture concerning character degrees of some p-groups

By

Andrea Previtali

1. Introduction. It has been conjectured that the character degrees of $P \in \operatorname{Syl}_{p}\left(A_{n}(q)\right)$, q a p-power, are q-powers. This has recently been established by Isaacs [1]. We extend this result to the p-Sylow subgroups of $C_{n}(q), D_{n}(q)$ and ${ }^{2} A_{2 n-1}\left(q^{2}\right), p$ an odd prime. This result was proved by Kazhdan [2] under the restriction $n<p$, which allows him to define the exponential map on the Lie algebra $L(P)$ associated to P. On the other hand, Isaacs shows that the character degrees of P are q-powers, whenever P is an algebra group over \mathbb{F}_{q}. Unfortunately, it is not clear whether this applies to our cases. To solve this problem, we define a map sharing some of the properties of the exponential map, with the advantage of being defined whenever p is odd, and prove that some suitable sections of P are strong subgroups.
2. Preliminary results. Let G denote one of the above mentioned groups of Lie type and set $F=\mathbb{F}_{q^{m}}$, where $m=2$ when $G={ }^{2} A_{2 n-1}\left(q^{2}\right)$ and $m=1$ otherwise. Let α be the identity automorphism of \mathbb{F}_{q} for $G=C_{n}(q), D_{n}(q)$ or the conjugation $x^{\alpha}=\bar{x}=x^{q}$ in $\mathbb{F}_{q^{2}}$, when $G={ }^{2} A_{2 n-1}\left(q^{2}\right)$. Define β on $(F)_{n}$ by $A^{\beta}=A,-A$ or $-\bar{A}$ for $G=C_{n}(q), D_{n}(q)$ or ${ }^{2} A_{2 n-1}\left(q^{2}\right)$. Let T^{*} denote $\left(T^{t}\right)^{-1}$ and $U_{n}(F)$ the p-Sylow subgroup of $S L(n, F)$ constituted by unitriangular lower matrices. $E_{i j}$ stands for the elementary matrix with entry 1 in the position (i, j), zero otherwise. We recall some of Isaacs' definitions. Given a group P, we say that P is an algebra group over F, if $P=1+J(A)$, where A is an associative finite dimensional algebra over the field F and $J(A)$ denotes its Jacobson radical. We say that C is an algebra subgroup of P if $C \leqq P$ and C is an algebra group. S is a strong subgroup of P if $|S \cap C|$ is a q-power for every algebra subgroup C of P. We say that P is a q-power-degree group if the degree of every irreducible character of P is a q-power.

Lemma 1. Let G be one of $C_{n}(q), D_{n}(q)$ or ${ }^{2} A_{2 n-1}\left(q^{2}\right)$ and define the groups $N=\left\{\left(\begin{array}{cc}I & 0 \\ A & I\end{array}\right): A^{t}=A^{\beta} \in(F)_{n}\right\}, K=\left\{\left(\begin{array}{cc}T^{\alpha} & 0 \\ 0 & T^{*}\end{array}\right) \quad T \in U_{n}(F)\right\}$. Then K normalizes N, $N \cap K=1$ and $P=N K$ is a Sylow p-subgroup of G.

Proof. It is enough to count the order of $K N$ and observe that the matrices of this form preserve the scalar product defined by the matrix $E=\left(\begin{array}{cc}0 & I_{n} \\ -I_{n} & 0\end{array}\right)$ in the symplectic case and by $E=\left(\begin{array}{cc}0 & I_{n} \\ I_{n} & 0\end{array}\right)$ in the orthogonal and unitary ones.

We now determine the structure of the inertia subgroup $I_{P}(\lambda)$, where $\lambda \in \operatorname{Irr}(N)$. Denote with Tr the trace map from F onto \mathbb{F}_{p} and set $\tau(A)=\operatorname{Tr}\left(\sum a_{i i}\right)$, where $A=\left(a_{i j}\right) \in(F)_{n}$.

Lemma 2. Let $V=\left\{A \in(F)_{n}: A^{\beta}=A^{t}\right\}$, where F is a finite field of odd characteristic. Let V be endowed with a K-set structure via $A^{R}=T^{t} A T^{\alpha}$, where $R=\left(\begin{array}{cc}T^{\alpha} & 0 \\ 0 & T^{*}\end{array}\right)$

Define $\phi:(F)_{n} \longrightarrow \operatorname{Hom}\left((F)_{n}, \mathbb{F}_{p}\right)$ via $A^{\phi}(B)=\tau(A B)$, then

1. $V^{\phi}=\operatorname{Hom}\left(V, \mathbb{F}_{p}\right)$,
2. $\left(A^{\phi}\right)^{R}=\left(T^{-\alpha} A T^{*}\right)^{\phi}$,
3. $C_{K}\left(A^{\phi}\right)=\left\{R \in K: A=T^{\alpha} A T^{t}\right\}$.

Proof. Set $W=(F)_{n}$. We first prove that ϕ is a \mathbb{F}_{p}-isomorphism between W and $\operatorname{Hom}\left(W, \mathbb{F}_{p}\right) . \mathbb{F}_{p}$-linearity is clear. By finite dimensionality, it suffices to show that ϕ is injective. In fact consider $A=\sum_{m, l} a_{m l} E_{m l}$ and $B=b E_{i j}$ in W, then

$$
\begin{equation*}
0=\tau\left(\sum_{m, l} a_{m l} E_{m l} b E_{i j}\right)=\operatorname{Tr}\left(b a_{j i}\right) . \tag{1}
\end{equation*}
$$

Since $\operatorname{Tr}(F)=\mathbb{F}_{p}$ and b is arbitrary, this forces $a_{j i}=0$, hence $A=0$. We prove $V^{\phi}=$ $\operatorname{Hom}\left(V, \mathbb{F}_{p}\right)$ when V is the set of symmetric matrices in W. Since $W^{\phi}=\operatorname{Hom}\left(W, \mathbb{F}_{p}\right)$, any $\mu \in \operatorname{Hom}\left(W, \mathbb{F}_{p}\right)$ is of the form C^{ϕ} with $C \in W$. We show that $\lambda=\mu_{V}$, the restriction of μ to V, is of the form A^{ϕ} for $A \in V$. Let B be an element in V, then

$$
\tau(C B)=\tau\left(B^{t} C^{t}\right)=\tau\left(B C^{t}\right)=\tau\left(C^{t} B\right) .
$$

Since q is odd, $\tau(C B)=\tau\left(\frac{1}{2}\left(C^{t}+C\right) B\right)=\tau(A B)$, where $A=\frac{1}{2}\left(C^{t}+C\right)$ is the symmetric matrix we were looking for. The orthogonal case follows in the same way and, for the unitary one, we need only to observe that \mathbb{F}_{p} is elementwise fixed by conjugation.

We finally remark that for an arbitrary G-module M, the induced action on the dual space \hat{M} is given by $\mu^{g}(m)=\mu\left(m^{g^{-1}}\right)$. Now

$$
\begin{aligned}
\left(A^{\phi}\right)^{R}(B) & =\left(A^{\phi}\right)\left(B^{R^{-1}}\right)=\tau\left(A T^{*} B T^{-\alpha}\right) \\
& =\tau\left(T^{-\alpha} A T^{*} B\right)=\left(T^{-\alpha} A T^{*}\right)^{\phi}(B),
\end{aligned}
$$

proving the last two statements.
Let ε denote a primitive p-th root of unity in \mathbb{C}. Apart from composition with the map defined by $v(a)=\varepsilon^{a}$, for $a \in \mathbb{F}_{p}$, we can identify A^{ϕ} with a linear character of N. With this abuse of notation the following statement holds

Corollary 1. $I_{P}\left(A^{\phi}\right) / N \cong\left\{T \in U_{n}(F): T^{\alpha} A T^{t}=A\right\}$.
Proof. $\left\{T \in U_{n}(F): T^{\alpha} A T^{t}=A\right\} \cong C_{K}\left(A^{\phi}\right) \cong I_{P}\left(A^{\phi}\right) / N$.
By classical Clifford's techniques, since

$$
1 \longrightarrow N \longrightarrow I_{P}(\lambda) \longrightarrow I_{P}(\lambda) / N \longrightarrow 1
$$

is a splitting sequence for all $\lambda \in \operatorname{Irr}(N), \lambda$ is extendible to a character $\lambda_{0} \in I_{P}(\lambda)$ and, by Gallagher's theorem,

$$
\operatorname{Irr}\left(I_{P}(\lambda) \mid \lambda\right)=\left\{\lambda_{0} \mu: \mu \in \operatorname{Irr}\left(I_{P}(\lambda) / N\right)\right\}
$$

Hence P is a q-power-degree group if this holds for $I_{P}(\lambda) / N$ and if $I_{P}(\lambda)$ has q-power index in P for every $\lambda \in \operatorname{Irr}(N)$. Following Isaacs' paper, this follows once we show that $I_{P}(\lambda) / N$ is a strong subgroup. For this purpose, we define a map f from \mathscr{N}_{n}, the nilpotent algebra of lower triangular matrices of dimension n over F onto $U_{n}(F)=I+\mathscr{N}_{n}$.

Lemma 3. Set $C_{n}=\frac{1}{n+1}\binom{2 n}{n}$, then C_{n} is an integer $\left(C_{n}\right.$ is also called the n-th Catalan number).

Proof. C_{n} satisfy the quadratic recurrence relation $C_{n}=\sum_{k=1}^{n} C_{k-1} C_{n-k}$ and $C_{0}=1$ (see [3], page 41), hence C_{n} is an integer.

Theorem 1. Let F be a finite field of odd characteristic, \mathscr{N}_{n} the nilpotent algebra of strictly lower triangular matrices over F and $U_{n}(F)=I+\mathscr{N}_{n}$, then there exists $f \in F[[x]]$ satisfying the following conditions:

1. $\forall X \in \mathscr{N}_{n}, f(-X)=f(X)^{-1}$.
2. f induces a bijection from \mathscr{N}_{n} onto $U_{n}(F)$.
3. $\forall A \in(F)_{n}, X, Y \in \mathscr{N}_{n}, f(Y) A f(X)=A \Leftrightarrow Y \mathrm{~A}+A X=0$.

Proof. Set $f(x)=v \overline{+x^{2}}+x$, where the determination of the sign is such that $(0)=1$. Formally

$$
f(x)=\sum_{k=0}^{\infty}\binom{\frac{1}{2}}{k} x^{2 k}+x
$$

Now

$$
\binom{\frac{1}{2}}{k}=\frac{(-1)^{k-1}}{2^{2 k-1}} \frac{1}{k}\binom{2 k-2}{k-1}=\frac{(-1)^{k-1}}{2^{2 k-1}} C_{k-1}
$$

where $C_{-1}=-\frac{1}{2}$.
By Lemma 3

$$
(x)=\sum_{k=0}^{\infty} \frac{(-1)^{k-1}}{2^{2 k-1}} C_{k-1} x^{2 k}+x
$$

is well-defined, whenever the characteristic is odd. For any $X \in \mathscr{N}_{n}, f(X)$ exists and belongs to $C(X)$, the centralizer of X in $U_{n}(F)$, and

$$
f(X) f(-X)=\left(\sqrt{I+X^{2}}+X\right)\left(\sqrt{I+X^{2}}-X\right)=I .
$$

Set $f(X)=T$, then $I+X^{2}=T^{2}-2 T X+X^{2}$ and $X=\frac{T-T^{-1}}{2}$, hence f is injective. Since \mathscr{N} is finite f induces a biiection.

Suppose $S A T=A$, where $T=f(X)$ and $S=F(Y)$, then $X=\frac{T-T^{-1}}{2}, Y=\frac{S-S^{-1}}{2}$

$$
Y A+A X=\frac{1}{2}\left(S A-A S^{-1}+A T-A T^{-1}\right)=0 .
$$

Conversely, if $Y A=-A X$, then, for every power series g, we have

$$
g(Y) A=A g(-X)
$$

In particular, for $g=f$, we get $f(Y) A f(X)=A$.
Lemma 4. Suppose $C=I+L$ is an algebra subgroup of $U_{n}(F)$, where L is a subalgebra of \mathscr{N}_{n}, then $C=f(L)$.
Proof. Since L is an algebra, $f(L) \subseteq I+L$. The converse inclusion follows from $|f(L)|=|L|=|I+L|$.

Corollary 2. $S=I_{P}(\lambda) / N$ is a strong subgroup for every $\lambda \in \operatorname{Irr}(N)$.
Proof. By Corollary 1 and Theorem 1, we know that, up to isomorphism, $S=f(M)$, where M is the \mathbb{F}_{q}-vector space $\left\{Z \in \mathscr{N}_{n}: Z^{\alpha} A+A Z^{t}=0\right\}$ and $\lambda=A^{\phi}$. Let $C=I+L$ be an algebra subgroup of $U_{n}(F)$, then $S \cap C=f(M \cap L)$. But $M \cap L$ is a \mathbb{F}_{q}-vector space, so its order is a q-power. Since f is one-to-one, this holds for $|S \cap C|$ also.

By Theorem D in [1], it follows that S is a q-power-degree group and S has q-power order. By the remarks preceding Theorem 1, we obtain

Theorem 2. If $P \in \operatorname{Syl}_{p}(G), G=C_{n}(q), D_{n}(q)$, or ${ }^{2} A_{2 n-1}\left(q^{2}\right), q$ odd, then P is a q-powerdegree group.

References

[1] I. M. IsaACs, Characters of groups associated with finite algebras. Submitted to J. Algebra
[2] D. Kazhdan, Proof of Springer's hypothesis. Israel J. of Math. 28, 272-286 (1977).
[3] H. Wilf, Generatingfunctionology. San Diego 1990.
Eingegangen am 20.9.1994*)
Anschrift des Autors:
Andrea Previtali
Via S. Eurosia, 15
I-22064 Casatenovo (CO)
Italia
*) Eine revidierte Fassung ging am 28. 2. 1995 ein.

